Compare commits

20 Commits
NMAP ... master

Author SHA1 Message Date
e64b880c97 feat: Improve daily recap functionality
- Changed the daily recap time to 22:00.
- Modified the `send_daily_recap` function to split the recap message into multiple messages if it exceeds 2000 characters to avoid hitting the Discord message length limit.
- Added a 1-second delay between each message chunk to avoid rate limiting.
2025-09-15 13:27:40 -05:00
e559e16e35 refactor: Change UFW block anomaly severity to medium
Changed the severity of the UFW block anomaly from "high" to "medium".
A high number of blocked connections is not a critical issue as long as the firewall is working correctly.
2025-09-15 13:24:43 -05:00
12e6ba0135 feat: Add UFW log monitoring
- Added a new function `get_ufw_logs` to monitor `/var/log/ufw.log`.
- Added a new table `ufw_logs` to the database to store UFW log data.
- Updated `analyze_data_locally` to detect anomalies in UFW logs (high number of blocked connections).
- Integrated the new functionality into the main monitoring loop.
2025-09-15 13:22:37 -05:00
0f0bdd2da7 chore: Clean up project structure
- Removed `monitoring_data.json` as it has been replaced by `monitoring.db`.
- Updated `.gitignore` to ignore log files.
2025-09-15 13:14:29 -05:00
07c768a4cf feat: Implement data retention policy
- Replaced `data_storage.py` with `database.py` to use SQLite instead of a JSON file for data storage.
- Added an `enforce_retention_policy` function to `database.py` to delete data older than 7 days.
- Called this function in the main monitoring loop in `monitor_agent.py`.
- Added Docker container monitoring.
- Updated `.gitignore` to ignore `monitoring.db`.
2025-09-15 13:12:05 -05:00
0b64f2ed03 Switched to SQLlite database 2025-09-14 22:01:00 -05:00
d102dc30f4 Offloaded data detection from the LLM and hardcoded it 2025-08-24 13:30:21 -05:00
6f7e99639c Attempting to remove the LLM out of processing 2025-08-23 19:03:40 -05:00
bebedb1e15 Trying to help the LLM 2025-08-23 16:04:49 -05:00
ff7bbb98d0 feat: Filter out temperature fluctuations with differences less than 5 degrees 2025-08-21 13:20:03 -05:00
57d7688c3a feat: Filter out small RTT fluctuations in LLM prompt
- Update the LLM prompt to instruct it to ignore RTT fluctuations below 10 seconds.
- Update PROGRESS.md to reflect the completion of the task.
2025-08-21 12:34:12 -05:00
83b25d81a6 feat: Add hostname resolution to Nmap scans
- Add -R flag to Nmap scan options to enable reverse DNS lookup.
- Modify the Nmap processing logic to extract and store hostnames.
- Update PROGRESS.md to reflect the completion of the task.
2025-08-21 12:32:40 -05:00
7e24379fa1 feat: Restrict alerts to a defined time window
- Add a function to check if the current time is within the alerting window (9am - 12am).
- Modify the alerting logic to only send alerts during this window.
- Update PROGRESS.md to reflect the completion of the task.
2025-08-21 12:28:08 -05:00
d03018de9b feat: Log LLM responses to console
- Add a StreamHandler to the logger to output all logs to the console.
- Log the LLM response to the console for real-time monitoring.
- Update PROGRESS.md to reflect the completion of the task.
- Fix a syntax error in monitor_agent.py.
2025-08-21 12:18:08 -05:00
f65b2d468d feat: Implement daily log rotation
- Add logging to monitor_agent.py to replace print statements.
- Configure TimedRotatingFileHandler to keep logs for the past 24 hours.
- Update .gitignore to exclude the new log file.
- Update PROGRESS.md to reflect the completion of the task.
2025-08-21 12:15:36 -05:00
e119bc7194 feat: Update baseline calculations and LLM prompts
- Change baseline calculations to use integers instead of floats to simplify data.
- Update LLM constraints and prompt for more accurate anomaly detection.
- Refine known_issues to reduce false positives.
- Update PROGRESS.md with new TODO items.
2025-08-21 12:12:15 -05:00
c5a446ea65 Updated Docs 2025-08-20 15:38:22 -05:00
b8b91880d6 Added log to .gitignore 2025-08-20 15:23:44 -05:00
e7730ebde5 Removed Log from Git 2025-08-20 15:23:28 -05:00
63ee043f34 Completed NMAP & Refactoring 2025-08-20 15:16:21 -05:00
21 changed files with 1465 additions and 1542 deletions

7
.gitignore vendored Normal file → Executable file
View File

@@ -1,4 +1,5 @@
__pycache__/*
*.pyc
__pycache__/
monitoring_data.json
log_position.txt
.DS_Store
monitoring.db
*.log

47
AGENTS.md Executable file
View File

@@ -0,0 +1,47 @@
# AGENTS.md
This document outlines the autonomous and human agents involved in the LLM-Powered Monitoring Agent project.
## Human Agents
### Inanis
- **Role**: Primary Operator, Project Owner
- **Responsibilities**:
- Defines project goals and requirements.
- Provides high-level guidance and approval for major changes.
- Reviews agent outputs and provides feedback.
- Manages overall project direction.
- **Contact**: [If Inanis wants to provide contact info, it would go here]
## Autonomous Agents
### Blight (LLM-Powered Monitoring Agent)
- **Role**: Autonomous Monitoring and Anomaly Detection Agent
- **Type**: Large Language Model (LLM) based agent
- **Capabilities**:
- Collects system and network metrics (logs, temperatures, network performance, Nmap scans).
- Analyzes collected data against historical baselines.
- Detects anomalies using an integrated LLM (Llama3.1).
- Generates actionable reports on detected anomalies.
- Sends alerts via Discord and Google Home.
- Provides daily recaps of events.
- **Interaction**:
- Receives instructions and context from Inanis via CLI.
- Provides analysis and reports in JSON format.
- Operates continuously in the background (unless in test mode).
- **Dependencies**:
- `ollama` (for LLM inference)
- `nmap`
- `lm-sensors`
- Python libraries (as listed in `requirements.txt`)
- **Configuration**: Configured via `config.py`, `CONSTRAINTS.md`, and `known_issues.json`.
- **Status**: Operational and continuously evolving.
## Agent Interactions
- **Inanis -> Blight**: Inanis provides high-level tasks, reviews Blight's output, and refines its behavior through code modifications and configuration updates.
- **Blight -> Inanis**: Blight reports detected anomalies, system status, and daily summaries to Inanis through configured alerting channels (Discord, Google Home) and logs.
- **Blight <-> System**: Blight interacts with the local operating system to collect data (reading logs, running commands like `sensors` and `nmap`).
- **Blight <-> LLM**: Blight sends collected and processed data to the local Ollama LLM for intelligent analysis and receives anomaly reports.

2
CONSTRAINTS.md Normal file → Executable file
View File

@@ -1,6 +1,8 @@
## LLM Constraints and Guidelines
- Not everything is an anamoly. Err on the side of caution when selecting severity. Its ok not to report anything. You don't have to say anything if you don't want to, or don't need to.
- Please do not report on anything that is older then 24 hours.
- The server uses a custom DNS server at 192.168.2.112.
- Please think carefully on if the measured values exceed the averages by any significant margin. A few seconds, or a few degrees in difference do not mean a significant margin. Only report anomolies with delta values greater then 10.
### Important Things to Focus On:
- Security-related events such as failed login attempts, unauthorized access, or unusual network connections.

104
PROGRESS.md Normal file → Executable file
View File

@@ -13,52 +13,84 @@
## Phase 2: Data Storage
9. [x] Create `data_storage.py`
10. [x] Implement data storage functions in `data_storage.py`
11. [x] Update `monitor_agent.py` to use data storage
12. [x] Update `SPEC.md` to reflect data storage functionality
9. [x] Implement data storage functions in `data_storage.py`
10. [x] Update `monitor_agent.py` to use data storage
11. [x] Update `SPEC.md` to reflect data storage functionality
## Phase 3: Expanded Monitoring
13. [x] Implement CPU temperature monitoring
14. [x] Implement GPU temperature monitoring
15. [x] Implement system login attempt monitoring
16. [x] Update `monitor_agent.py` to include new metrics
17. [x] Update `SPEC.md` to reflect new metrics
18. [x] Extend `calculate_baselines` to include system temps
12. [x] Implement CPU temperature monitoring
13. [x] Implement GPU temperature monitoring
14. [x] Implement system login attempt monitoring
15. [x] Update `monitor_agent.py` to include new metrics
16. [x] Update `SPEC.md` to reflect new metrics
17. [x] Extend `calculate_baselines` to include system temps
## Phase 4: Troubleshooting
19. [x] Investigated and resolved issue with `jc` library
20. [x] Removed `jc` library as a dependency
21. [x] Implemented manual parsing of `sensors` command output
18. [x] Investigated and resolved issue with `jc` library
19. [x] Removed `jc` library as a dependency
20. [x] Implemented manual parsing of `sensors` command output
## Tasks Already Done
## Phase 5: Network Scanning (Nmap Integration)
[x] Ensure we aren't using mockdata for get_system_logs() and get_network_metrics()
[x] Improve `get_system_logs()` to read new lines since last check
[x] Improve `get_network_metrics()` by using a library like `pingparsing`
[x] Ensure we are including CONSTRAINTS.md in our analyze_data_with_llm() function
[x] Summarize entire report into a single sentence to said to Home Assistant
[x] Figure out why Home Assitant isn't using the speaker
## Keeping track of Current Objectives
[x] Improve "high" priority detection by explicitly instructing LLM to output severity in structured JSON format.
[x] Implement dynamic contextual information (Known/Resolved Issues Feed) for LLM to improve severity detection.
## Network Scanning (Nmap Integration)
1. [x] Add `python-nmap` to `requirements.txt` and install.
2. [x] Define `NMAP_TARGETS` and `NMAP_SCAN_OPTIONS` in `config.py`.
3. [x] Create a new function `get_nmap_scan_results()` in `monitor_agent.py`:
21. [x] Add `python-nmap` to `requirements.txt` and install.
22. [x] Define `NMAP_TARGETS` and `NMAP_SCAN_OPTIONS` in `config.py`.
23. [x] Create a new function `get_nmap_scan_results()` in `monitor_agent.py`:
* [x] Use `python-nmap` to perform a scan on the defined targets with the specified options.
* [x] Return the parsed results.
4. [x] Integrate `get_nmap_scan_results()` into the main monitoring loop:
24. [x] Integrate `get_nmap_scan_results()` into the main monitoring loop:
* [x] Call this function periodically (e.g., less frequently than other metrics).
* [x] Add the `nmap` results to the `combined_data` dictionary.
5. [x] Update `data_storage.py` to store `nmap` results.
6. [x] Extend `calculate_baselines()` in `data_storage.py` to include `nmap` baselines:
25. [x] Update `data_storage.py` to store `nmap` results.
26. [x] Extend `calculate_baselines()` in `data_storage.py` to include `nmap` baselines:
* [x] Compare current `nmap` results with historical data to identify changes.
7. [x] Modify `analyze_data_with_llm()` prompt to include `nmap` scan results for analysis.
8. [x] Consider how to handle `nmap` permissions.
27. [x] Modify `analyze_data_with_llm()` prompt to include `nmap` scan results for analysis.
28. [x] Consider how to handle `nmap` permissions.
29. [x] Improve Nmap data logging to include IP addresses, open ports, and service details.
## Phase 6: Code Refactoring and Documentation
30. [x] Remove duplicate `pingparsing` import in `monitor_agent.py`.
31. [x] Refactor `get_cpu_temperature` and `get_gpu_temperature` to call `sensors` command only once.
32. [x] Refactor `get_login_attempts` to use a position file for efficient log reading.
33. [x] Simplify JSON parsing in `analyze_data_with_llm`.
34. [x] Move LLM prompt to a separate function `build_llm_prompt`.
35. [x] Refactor main loop into smaller functions (`run_monitoring_cycle`, `main`).
36. [x] Create helper function in `data_storage.py` for calculating average metrics.
37. [x] Update `README.md` with current project status and improvements.
38. [x] Create `AGENTS.md` to document human and autonomous agents.
## Previous TODO
- [x] Improve "high" priority detection by explicitly instructing LLM to output severity in structured JSON format.
- [x] Implement dynamic contextual information (Known/Resolved Issues Feed) for LLM to improve severity detection.
- [x] Change baseline calculations to only use integers instead of floats.
- [x] Add a log file that only keeps records for the past 24 hours.
- [x] Log all LLM responses to the console.
- [x] Reduce alerts to only happen between 9am and 12am.
- [x] Get hostnames of devices in Nmap scan.
- [x] Filter out RTT fluctuations below 10 seconds.
- [x] Filter out temperature fluctuations with differences less than 5 degrees.
- [x] Create a list of known port numbers and their applications for the LLM to check against to see if an open port is a threat
- [x] When calculating averages, please round up to the nearest integer. We only want to deliver whole integers to the LLM to process, and nothing with decimal points. It gets confused with decimal points.
- [x] In the discord message, please include the exact specific details and the log of the problem that prompted the alert
## Phase 7: Offloading Analysis from LLM
39. [x] Create a new function `analyze_data_locally` in `monitor_agent.py`.
39.1. [x] This function will take `data`, `baselines`, `known_issues`, and `port_applications` as input.
39.2. [x] It will contain the logic to compare current data with baselines and predefined thresholds.
39.3. [x] It will be responsible for identifying anomalies for various metrics (CPU/GPU temp, network RTT, failed logins, Nmap changes).
39.4. [x] It will return a list of dictionaries, where each dictionary represents an anomaly and contains 'severity' and 'reason' keys.
40. [x] Refactor `analyze_data_with_llm` into a new function called `generate_llm_report`.
40.1. [x] This function will take the list of anomalies from `analyze_data_locally` as input.
40.2. [x] It will construct a simple prompt to ask the LLM to generate a human-readable summary of the anomalies.
40.3. [x] The LLM will no longer be making analytical decisions.
41. [x] Update `run_monitoring_cycle` to orchestrate the new workflow.
41.1. [x] Call `analyze_data_locally` to get the list of anomalies.
41.2. [x] If anomalies are found, call `generate_llm_report` to create the report.
41.3. [x] Use the output of `generate_llm_report` for alerting.
42. [x] Remove the detailed analytical instructions from `build_llm_prompt` as they will be handled by `analyze_data_locally`.
## TODO

0
PROMPT.md Normal file → Executable file
View File

147
README.md Normal file → Executable file
View File

@@ -1,104 +1,93 @@
# LLM-Powered Monitoring Agent
This project is a self-hosted monitoring agent that uses a local Large Language Model (LLM) to detect anomalies in system and network data. It's designed to be a simple, self-contained Python script that can be easily deployed on a server.
This project implements an LLM-powered monitoring agent designed to continuously collect system and network data, analyze it against historical baselines, and alert on anomalies. The agent leverages a local Large Language Model (LLM) for intelligent anomaly detection and integrates with Discord and Google Home for notifications.
## 1. Installation
## Features
To get started, you'll need to have Python 3.8 or newer installed. Then, follow these steps:
- **System Log Monitoring**: Tracks new entries in `/var/log/syslog` and `/var/log/auth.log` (for login attempts).
- **Network Metrics**: Gathers network performance data by pinging a public IP (e.g., 8.8.8.8).
- **Hardware Monitoring**: Collects CPU and GPU temperature data.
- **Nmap Scanning**: Periodically performs network scans to discover hosts and open ports.
- **Historical Baseline Analysis**: Compares current data against a 24-hour rolling baseline to identify deviations.
- **LLM-Powered Anomaly Detection**: Utilizes a local LLM (Ollama with Llama3.1) to analyze combined system data, baselines, and Nmap changes for anomalies.
- **Alerting**: Sends high-severity anomaly alerts to Discord and Google Home speakers (via Home Assistant).
- **Daily Recap**: Provides a daily summary of detected events.
1. **Clone the repository or download the files:**
## Recent Improvements
```bash
git clone <repository_url>
cd <repository_directory>
```
- **Enhanced Nmap Data Logging**: The Nmap scan results are now processed and stored in a more structured format, including:
- Discovered IP addresses.
- Status of each host.
- Detailed list of open ports for each host, including service, product, and version information.
This significantly improves the clarity and utility of Nmap data for anomaly detection.
- **Code Refactoring (`monitor_agent.py`)**:
- **Optimized Sensor Data Collection**: CPU and GPU temperature data are now collected with a single call to the `sensors` command, improving efficiency.
- **Efficient Login Attempt Logging**: The agent now tracks its position in `/var/log/auth.log`, preventing redundant reads of the entire file and improving performance for large log files.
- **Modular Main Loop**: The core monitoring logic has been broken down into smaller, more manageable functions, enhancing readability and maintainability.
- **Separated LLM Prompt Building**: The complex LLM prompt construction logic has been moved into a dedicated function, making `analyze_data_with_llm` more focused.
- **Code Refactoring (`data_storage.py`)**:
- **Streamlined Baseline Calculations**: Helper functions have been introduced to reduce code duplication and improve clarity in the calculation of average metrics for baselines.
2. **Create and activate a Python virtual environment:**
```bash
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
```
3. **Install the required Python libraries:**
```bash
pip install -r requirements.txt
```
## 2. Setup
Before running the agent, you need to configure it and ensure the necessary services are running.
## Setup and Installation
### Prerequisites
- **Ollama:** The agent requires that [Ollama](https://ollama.com/) is installed and running on the server.
- **LLM Model:** You must have the `llama3.1:8b` model pulled and available in Ollama. You can pull it with the following command:
- Python 3.x
- `ollama` installed and running with the `llama3.1:8b` model pulled (`ollama pull llama3.1:8b`)
- `nmap` installed
- `lm-sensors` installed (for CPU/GPU temperature monitoring)
- Discord webhook URL
- (Optional) Home Assistant instance with a long-lived access token and a Google Home speaker configured.
### Installation
1. Clone the repository:
```bash
ollama pull llama3.1:8b
git clone <repository_url>
cd LLM-Powered-Monitoring-Agent
```
2. Install Python dependencies:
```bash
pip install -r requirements.txt
```
3. Configure the agent:
- Open `config.py` and update the following variables:
- `DISCORD_WEBHOOK_URL`
- `HOME_ASSISTANT_URL` (if using Google Home alerts)
- `HOME_ASSISTANT_TOKEN` (if using Google Home alerts)
- `GOOGLE_HOME_SPEAKER_ID` (if using Google Home alerts)
- `NMAP_TARGETS` (e.g., "192.168.1.0/24" or "192.168.1.100")
- `NMAP_SCAN_OPTIONS` (default is "-sS -T4")
- `DAILY_RECAP_TIME` (e.g., "20:00" for 8 PM)
- `TEST_MODE` (set to `True` for a single run, `False` for continuous operation)
### Configuration
## Usage
All configuration is done in the `config.py` file. You will need to replace the placeholder values with your actual credentials and URLs.
- `DISCORD_WEBHOOK_URL`: Your Discord channel's webhook URL. This is used to send alerts.
- `HOME_ASSISTANT_URL`: The URL of your Home Assistant instance (e.g., `http://192.168.1.50:8123`).
- `HOME_ASSISTANT_TOKEN`: A Long-Lived Access Token for your Home Assistant instance. You can generate this in your Home Assistant profile settings.
- `GOOGLE_HOME_SPEAKER_ID`: The `media_player` entity ID for your Google Home speaker in Home Assistant (e.g., `media_player.kitchen_speaker`).
## 3. Usage
Once the installation and setup are complete, you can run the monitoring agent with the following command:
To run the monitoring agent:
```bash
python monitor_agent.py
```
The script will start a continuous monitoring loop. Every 5 minutes, it will:
### Test Mode
1. Collect simulated system and network data.
2. Send the data to the local LLM for analysis.
3. If the LLM detects a **high-severity** anomaly, it will send an alert to your configured Discord channel and broadcast a message to your Google Home speaker via Home Assistant.
4. At the time specified in `DAILY_RECAP_TIME`, a summary of all anomalies for the day will be sent to the Discord channel.
Set `TEST_MODE = True` in `config.py` to run the agent once and exit. This is useful for testing configurations and initial setup.
The script will print its status and any detected anomalies to the console.
## Extending and Customizing
### Nmap Scans
- **Adding New Metrics**: You can add new data collection functions in `monitor_agent.py` and include their results in the `combined_data` dictionary.
- **Customizing LLM Analysis**: Modify the `CONSTRAINTS.md` file to provide specific instructions or constraints to the LLM for anomaly detection.
- **Known Issues**: Update `known_issues.json` with any known or expected system behaviors to prevent the LLM from flagging them as anomalies.
- **Alerting Mechanisms**: Implement additional alerting functions (e.g., email, SMS) in `monitor_agent.py` and integrate them into the anomaly detection logic.
The agent uses `nmap` to scan the network for open ports. By default, it uses a TCP SYN scan (`-sS`), which requires root privileges. If the script is not run as root, it will fall back to a TCP connect scan (`-sT`), which does not require root privileges but is slower and more likely to be detected.
## Project Structure
To run the agent with root privileges, use the `sudo` command:
```bash
sudo python monitor_agent.py
```
## 4. Features
### Priority System
The monitoring agent uses a priority system to classify anomalies. The LLM is instructed to return a severity level for each anomaly it detects. The possible severity levels are:
- **high**: Indicates a critical issue that requires immediate attention. An alert is sent to Discord and Google Home.
- **medium**: Indicates a non-critical issue that should be investigated. No alert is sent.
- **low**: Indicates a minor issue or a potential false positive. No alert is sent.
- **none**: Indicates that no anomaly was detected.
### Known Issues Feed
The agent uses a `known_issues.json` file to provide the LLM with a list of known issues and their resolutions. This helps the LLM to avoid flagging resolved or expected issues as anomalies.
You can add new issues to the `known_issues.json` file by following the existing format. Each issue should have an "issue" and a "resolution" key. For example:
```json
[
{
"issue": "CPU temperature spikes to 80C under heavy load",
"resolution": "This is normal behavior for this CPU model and is not a cause for concern."
}
]
```
**Note on Mock Data:** The current version of the script uses mock data for system logs and network metrics. To use this in a real-world scenario, you would need to replace the mock data with actual data from your systems.
- `monitor_agent.py`: Main script for data collection, LLM interaction, and alerting.
- `data_storage.py`: Handles loading, storing, and calculating baselines from historical data.
- `config.py`: Stores configurable parameters for the agent.
- `requirements.txt`: Lists Python dependencies.
- `CONSTRAINTS.md`: Defines constraints and guidelines for the LLM's analysis.
- `known_issues.json`: A JSON file containing a list of known issues to be considered by the LLM.
- `monitoring_data.json`: (Generated) Stores historical monitoring data.
- `log_position.txt`: (Generated) Stores the last read position for `/var/log/syslog`.
- `auth_log_position.txt`: (Generated) Stores the last read position for `/var/log/auth.log`.

65
SPEC.md Normal file → Executable file
View File

@@ -14,6 +14,10 @@ The project will be composed of the following files:
- **`README.md`**: A documentation file providing an overview of the project, setup instructions, and usage examples.
- **`.gitignore`**: A file to specify which files and directories should be ignored by Git.
- **`PROGRESS.md`**: A file to track the development progress of the project.
- **`data_storage.py`**: Handles loading, storing, and calculating baselines from historical data.
- **`CONSTRAINTS.md`**: Defines constraints and guidelines for the LLM's analysis.
- **`known_issues.json`**: A JSON file containing a list of known issues to be considered by the LLM.
- **`AGENTS.md`**: Documents the human and autonomous agents involved in the project.
## 3. Functional Requirements
@@ -26,10 +30,12 @@ The project will be composed of the following files:
- `HOME_ASSISTANT_TOKEN`
- `GOOGLE_HOME_SPEAKER_ID`
- `DAILY_RECAP_TIME`
- `NMAP_TARGETS`
- `NMAP_SCAN_OPTIONS`
### 3.2. Data Ingestion and Parsing
- The agent must be able to collect and parse system logs.
- The agent must be able to collect and parse system logs (syslog and auth.log).
- The agent must be able to collect and parse network metrics.
- The parsing of this data should result in a structured format (JSON or Python dictionary).
@@ -38,24 +44,25 @@ The project will be composed of the following files:
- **CPU Temperature**: The agent will monitor the CPU temperature.
- **GPU Temperature**: The agent will monitor the GPU temperature.
- **System Login Attempts**: The agent will monitor system login attempts.
- **Network Scan Results (Nmap)**: The agent will periodically perform Nmap scans to discover hosts and open ports, logging detailed information including IP addresses, host status, and open ports with service details.
### 3.3. LLM Analysis
### 3.4. LLM Analysis
- The agent must use a local LLM (via Ollama) to analyze the collected data.
- The agent must construct a specific prompt to guide the LLM in identifying anomalies.
- The LLM's response will be either "OK" (no anomaly) or a natural language paragraph describing the anomaly, including a severity level (high, medium, low).
- The agent must construct a specific prompt to guide the LLM in identifying anomalies, incorporating historical baselines and known issues.
- The LLM's response will be a structured JSON object with `severity` (high, medium, low, none) and `reason` fields.
### 3.4. Alerting
### 3.5. Alerting
- The agent must be able to send alerts to a Discord webhook.
- The agent must be able to trigger a text-to-speech (TTS) alert on a Google Home speaker via Home Assistant.
### 3.5. Alerting Logic
### 3.6. Alerting Logic
- Immediate alerts (Discord and Home Assistant) will only be sent for "high" severity anomalies.
- A daily recap of all anomalies (high, medium, and low) will be sent at a configurable time.
### 3.6. Main Loop
### 3.7. Main Loop
- The agent will run in a continuous loop.
- The loop will execute the data collection, analysis, and alerting steps periodically.
@@ -64,30 +71,66 @@ The project will be composed of the following files:
## 4. Data Storage and Baselining
- **4.1. Data Storage**: The agent will store historical monitoring data in a JSON file (`monitoring_data.json`).
- **4.2. Baselining**: The agent will calculate baseline averages for key metrics (e.g., RTT, packet loss) from the stored historical data. This baseline will be used by the LLM to improve anomaly detection accuracy.
- **4.2. Baselining**: The agent will calculate baseline averages for key metrics (e.g., RTT, packet loss, temperatures, open ports) from the stored historical data. This baseline will be used by the LLM to improve anomaly detection accuracy.
## 5. Technical Requirements
- **Language**: Python 3.8+
- **LLM**: `llama3.1:8b` running on a local Ollama instance.
- **Prerequisites**: `nmap`, `lm-sensors`
- **Libraries**:
- `ollama`
- `discord-webhook`
- `requests`
- `syslog-rfc5424-parser`
- `apachelogs`
- `jc`
- `pingparsing`
- `python-nmap`
## 6. Project Structure
```
/
├── .gitignore
├── AGENTS.md
├── config.py
├── CONSTRAINTS.md
├── data_storage.py
├── known_issues.json
├── log_position.txt
├── auth_log_position.txt
├── monitor_agent.py
├── PROMPT.md
├── README.md
├── requirements.txt
├── PROGRESS.md
└── SPEC.md
```
```
## 7. Testing and Debugging
The script is equipped with a test mode, that only runs the script once, and not continuously. To enable, change the `TEST_MODE` variable in `config.py` to `True`. Once finished testing, change the variable back to `False`.
## 8. Future Enhancements
### 8.1. Process Monitoring
**Description:** The agent will be able to monitor a list of critical processes to ensure they are running. If a process is not running, an anomaly will be generated.
**Implementation Plan:**
1. **Configuration:** Add a new list variable to `config.py` named `PROCESSES_TO_MONITOR` which will contain the names of the processes to be monitored.
2. **Data Ingestion:** Create a new function in `monitor_agent.py` called `get_running_processes()` that uses the `psutil` library to get a list of all running processes.
3. **Data Analysis:** In `analyze_data_locally()`, compare the list of running processes with the `PROCESSES_TO_MONITOR` list from the configuration. If a process from the configured list is not found in the running processes, generate a "high" severity anomaly.
4. **LLM Integration:** The existing `generate_llm_report()` function will be used to generate a report for the new anomaly type.
5. **Alerting:** The existing alerting system will be used to send alerts for the new anomaly type.
### 8.2. Docker Container Monitoring
**Description:** The agent will be able to monitor a list of critical Docker containers to ensure they are running and healthy. If a container is not running or is in an unhealthy state, an anomaly will be generated.
**Implementation Plan:**
1. **Configuration:** Add a new list variable to `config.py` named `DOCKER_CONTAINERS_TO_MONITOR` which will contain the names of the Docker containers to be monitored.
2. **Data Ingestion:** Create a new function in `monitor_agent.py` called `get_docker_container_status()` that uses the `docker` Python library to get the status of all running containers.
3. **Data Analysis:** In `analyze_data_locally()`, iterate through the `DOCKER_CONTAINERS_TO_MONITOR` list. For each container, check its status. If a container is not running or its status is not "running", generate a "high" severity anomaly.
4. **LLM Integration:** The existing `generate_llm_report()` function will be used to generate a report for the new anomaly type.
5. **Alerting:** The existing alerting system will be used to send alerts for the new anomaly type.

1
auth_log_position.txt Executable file
View File

@@ -0,0 +1 @@
449823

11
config.py Normal file → Executable file
View File

@@ -9,11 +9,14 @@ HOME_ASSISTANT_TOKEN = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJjOGRmZjI
GOOGLE_HOME_SPEAKER_ID = "media_player.spencer_room_speaker"
# Daily Recap Time (in 24-hour format, e.g., "20:00")
DAILY_RECAP_TIME = "20:00"
DAILY_RECAP_TIME = "22:00"
# Nmap Configuration
NMAP_TARGETS = "192.168.1.0/24"
NMAP_SCAN_OPTIONS = "-sS -T4"
NMAP_TARGETS = "192.168.2.0/24"
NMAP_SCAN_OPTIONS = "-sS -T4 -R"
# Docker Configuration
DOCKER_CONTAINERS_TO_MONITOR = ["gitea","portainer","gluetun","mealie","n8n","minecraft"]
# Test Mode (True to run once and exit, False to run continuously)
TEST_MODE = False
TEST_MODE = False

View File

@@ -1,56 +0,0 @@
import json
import os
from datetime import datetime, timedelta, timezone
DATA_FILE = 'monitoring_data.json'
def load_data():
if os.path.exists(DATA_FILE):
with open(DATA_FILE, 'r') as f:
return json.load(f)
return []
def store_data(new_data):
data = load_data()
data.append(new_data)
with open(DATA_FILE, 'w') as f:
json.dump(data, f, indent=4)
def calculate_baselines():
data = load_data()
if not data:
return {}
# For simplicity, we'll average the last 24 hours of data
# More complex logic can be added here
recent_data = [d for d in data if 'timestamp' in d and datetime.fromisoformat(d['timestamp'].replace('Z', '')).replace(tzinfo=timezone.utc) > datetime.now(timezone.utc) - timedelta(hours=24)]
if not recent_data:
return {}
baseline_metrics = {
'avg_rtt': sum(d['network_metrics']['rtt_avg'] for d in recent_data if 'rtt_avg' in d['network_metrics']) / len(recent_data),
'packet_loss': sum(d['network_metrics']['packet_loss_rate'] for d in recent_data if 'packet_loss_rate' in d['network_metrics']) / len(recent_data),
'avg_cpu_temp': sum(d['cpu_temperature']['cpu_temperature'] for d in recent_data if d['cpu_temperature']['cpu_temperature'] != "N/A") / len(recent_data),
'avg_gpu_temp': sum(d['gpu_temperature']['gpu_temperature'] for d in recent_data if d['gpu_temperature']['gpu_temperature'] != "N/A") / len(recent_data),
}
# Baseline for open ports from nmap scans
host_ports = {}
for d in recent_data:
if 'nmap_results' in d and 'scan' in d['nmap_results']:
for host, scan_data in d['nmap_results']['scan'].items():
if host not in host_ports:
host_ports[host] = set()
if 'tcp' in scan_data:
for port, port_data in scan_data['tcp'].items():
if port_data['state'] == 'open':
host_ports[host].add(port)
# Convert sets to sorted lists for JSON serialization
for host, ports in host_ports.items():
host_ports[host] = sorted(list(ports))
baseline_metrics['host_ports'] = host_ports
return baseline_metrics

262
database.py Executable file
View File

@@ -0,0 +1,262 @@
import sqlite3
import json
from datetime import datetime, timedelta, timezone
import logging
logger = logging.getLogger(__name__)
DATABASE_FILE = 'monitoring.db'
def initialize_database():
"""Initializes the database and creates tables if they don't exist."""
try:
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
# Main table for monitoring data
cursor.execute("""
CREATE TABLE IF NOT EXISTS monitoring_data (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT NOT NULL
)
""")
# Table for network metrics
cursor.execute("""
CREATE TABLE IF NOT EXISTS network_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
monitoring_data_id INTEGER,
rtt_avg REAL,
packet_loss_rate REAL,
FOREIGN KEY (monitoring_data_id) REFERENCES monitoring_data (id)
)
""")
# Table for temperatures
cursor.execute("""
CREATE TABLE IF NOT EXISTS temperatures (
id INTEGER PRIMARY KEY AUTOINCREMENT,
monitoring_data_id INTEGER,
cpu_temp REAL,
gpu_temp REAL,
FOREIGN KEY (monitoring_data_id) REFERENCES monitoring_data (id)
)
""")
# Table for login attempts
cursor.execute("""
CREATE TABLE IF NOT EXISTS login_attempts (
id INTEGER PRIMARY KEY AUTOINCREMENT,
monitoring_data_id INTEGER,
log_line TEXT,
FOREIGN KEY (monitoring_data_id) REFERENCES monitoring_data (id)
)
""")
# Table for Nmap scans
cursor.execute("""
CREATE TABLE IF NOT EXISTS nmap_scans (
id INTEGER PRIMARY KEY AUTOINCREMENT,
monitoring_data_id INTEGER,
scan_data TEXT,
FOREIGN KEY (monitoring_data_id) REFERENCES monitoring_data (id)
)
""")
# Table for Docker status
cursor.execute("""
CREATE TABLE IF NOT EXISTS docker_status (
id INTEGER PRIMARY KEY AUTOINCREMENT,
monitoring_data_id INTEGER,
container_name TEXT,
status TEXT,
FOREIGN KEY (monitoring_data_id) REFERENCES monitoring_data (id)
)
""")
# Table for syslog
cursor.execute("""
CREATE TABLE IF NOT EXISTS syslog (
id INTEGER PRIMARY KEY AUTOINCREMENT,
monitoring_data_id INTEGER,
log_data TEXT,
FOREIGN KEY (monitoring_data_id) REFERENCES monitoring_data (id)
)
""")
# Table for ufw logs
cursor.execute("""
CREATE TABLE IF NOT EXISTS ufw_logs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
monitoring_data_id INTEGER,
log_line TEXT,
FOREIGN KEY (monitoring_data_id) REFERENCES monitoring_data (id)
)
""")
conn.commit()
conn.close()
logger.info("Database initialized successfully.")
except sqlite3.Error as e:
logger.error(f"Error initializing database: {e}")
def store_data(new_data):
"""Stores new monitoring data in the database."""
try:
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
# Insert into main table
cursor.execute("INSERT INTO monitoring_data (timestamp) VALUES (?)", (new_data['timestamp'],))
monitoring_data_id = cursor.lastrowid
# Insert into network_metrics
if 'network_metrics' in new_data:
nm = new_data['network_metrics']
cursor.execute("INSERT INTO network_metrics (monitoring_data_id, rtt_avg, packet_loss_rate) VALUES (?, ?, ?)",
(monitoring_data_id, nm.get('rtt_avg'), nm.get('packet_loss_rate')))
# Insert into temperatures
if 'cpu_temperature' in new_data or 'gpu_temperature' in new_data:
cpu_temp = new_data.get('cpu_temperature', {}).get('cpu_temperature')
gpu_temp = new_data.get('gpu_temperature', {}).get('gpu_temperature')
cursor.execute("INSERT INTO temperatures (monitoring_data_id, cpu_temp, gpu_temp) VALUES (?, ?, ?)",
(monitoring_data_id, cpu_temp, gpu_temp))
# Insert into login_attempts
if 'login_attempts' in new_data and new_data['login_attempts'].get('failed_login_attempts'):
for line in new_data['login_attempts']['failed_login_attempts']:
cursor.execute("INSERT INTO login_attempts (monitoring_data_id, log_line) VALUES (?, ?)",
(monitoring_data_id, line))
# Insert into nmap_scans
if 'nmap_results' in new_data:
cursor.execute("INSERT INTO nmap_scans (monitoring_data_id, scan_data) VALUES (?, ?)",
(monitoring_data_id, json.dumps(new_data['nmap_results'])))
# Insert into docker_status
if 'docker_container_status' in new_data:
for name, status in new_data['docker_container_status'].get('docker_container_status', {}).items():
cursor.execute("INSERT INTO docker_status (monitoring_data_id, container_name, status) VALUES (?, ?, ?)",
(monitoring_data_id, name, status))
# Insert into syslog
if 'system_logs' in new_data:
for log in new_data['system_logs'].get('syslog', []):
cursor.execute("INSERT INTO syslog (monitoring_data_id, log_data) VALUES (?, ?)",
(monitoring_data_id, json.dumps(log)))
# Insert into ufw_logs
if 'ufw_logs' in new_data:
for line in new_data['ufw_logs']:
cursor.execute("INSERT INTO ufw_logs (monitoring_data_id, log_line) VALUES (?, ?)",
(monitoring_data_id, line))
conn.commit()
conn.close()
except sqlite3.Error as e:
logger.error(f"Error storing data: {e}")
def calculate_baselines():
"""Calculates baseline metrics from data in the last 24 hours."""
try:
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
twenty_four_hours_ago = (datetime.now(timezone.utc) - timedelta(hours=24)).isoformat()
# Calculate average RTT and packet loss
cursor.execute("""
SELECT AVG(nm.rtt_avg), AVG(nm.packet_loss_rate)
FROM network_metrics nm
JOIN monitoring_data md ON nm.monitoring_data_id = md.id
WHERE md.timestamp > ?
""", (twenty_four_hours_ago,))
avg_rtt, avg_packet_loss = cursor.fetchone()
# Calculate average temperatures
cursor.execute("""
SELECT AVG(t.cpu_temp), AVG(t.gpu_temp)
FROM temperatures t
JOIN monitoring_data md ON t.monitoring_data_id = md.id
WHERE md.timestamp > ?
""", (twenty_four_hours_ago,))
avg_cpu_temp, avg_gpu_temp = cursor.fetchone()
# Get baseline open ports
cursor.execute("""
SELECT ns.scan_data
FROM nmap_scans ns
JOIN monitoring_data md ON ns.monitoring_data_id = md.id
WHERE md.timestamp > ?
ORDER BY md.timestamp DESC
LIMIT 1
""", (twenty_four_hours_ago,))
latest_nmap_scan = cursor.fetchone()
host_ports = {}
if latest_nmap_scan:
scan_data = json.loads(latest_nmap_scan[0])
if 'hosts' in scan_data:
for host_info in scan_data['hosts']:
host_ip = host_info['ip']
if host_ip not in host_ports:
host_ports[host_ip] = set()
for port_info in host_info.get('open_ports', []):
host_ports[host_ip].add(port_info['port'])
for host, ports in host_ports.items():
host_ports[host] = sorted(list(ports))
conn.close()
return {
'avg_rtt': avg_rtt or 0,
'packet_loss': avg_packet_loss or 0,
'avg_cpu_temp': avg_cpu_temp or 0,
'avg_gpu_temp': avg_gpu_temp or 0,
'host_ports': host_ports
}
except sqlite3.Error as e:
logger.error(f"Error calculating baselines: {e}")
return {}
def enforce_retention_policy(retention_days=7):
"""Enforces the data retention policy by deleting old data."""
try:
conn = sqlite3.connect(DATABASE_FILE)
cursor = conn.cursor()
retention_cutoff = (datetime.now(timezone.utc) - timedelta(days=retention_days)).isoformat()
# Find old monitoring_data IDs
cursor.execute("SELECT id FROM monitoring_data WHERE timestamp < ?", (retention_cutoff,))
old_ids = [row[0] for row in cursor.fetchall()]
if not old_ids:
logger.info("No old data to delete.")
conn.close()
return
# Create a placeholder string for the IN clause
placeholders = ','.join('?' for _ in old_ids)
# Delete from child tables
cursor.execute(f"DELETE FROM network_metrics WHERE monitoring_data_id IN ({placeholders})", old_ids)
cursor.execute(f"DELETE FROM temperatures WHERE monitoring_data_id IN ({placeholders})", old_ids)
cursor.execute(f"DELETE FROM login_attempts WHERE monitoring_data_id IN ({placeholders})", old_ids)
cursor.execute(f"DELETE FROM nmap_scans WHERE monitoring_data_id IN ({placeholders})", old_ids)
cursor.execute(f"DELETE FROM docker_status WHERE monitoring_data_id IN ({placeholders})", old_ids)
cursor.execute(f"DELETE FROM syslog WHERE monitoring_data_id IN ({placeholders})", old_ids)
cursor.execute(f"DELETE FROM ufw_logs WHERE monitoring_data_id IN ({placeholders})", old_ids)
# Delete from the main table
cursor.execute(f"DELETE FROM monitoring_data WHERE id IN ({placeholders})", old_ids)
conn.commit()
conn.close()
logger.info(f"Deleted {len(old_ids)} old records.")
except sqlite3.Error as e:
logger.error(f"Error enforcing retention policy: {e}")

20
known_issues.json Normal file → Executable file
View File

@@ -1,10 +1,26 @@
[
{
"issue": "CPU temperature spikes to 90C under heavy load",
"resolution": "This is normal behavior for this CPU model and is not a cause for concern."
"issue": "CPU temperatures less then the average",
"resolution": "This is normal behavior for CPU's when not in use. Lower Temps are usually a good thing"
},
{
"issue": "Access attempts from unknown IP Addresses",
"resolution": "ufw has been enabled, and blocks all default connections by default. The only IP Addresses allowed are 192.168.2.0/24 and 100.64.0.0/10"
},
{
"issue": "Network Timing values are lower then average",
"resolution": "In networking, timing values lower then the average are often good things, and do not need to be considered an anomaly"
},
{
"issue": "Port 62078 is open",
"resolution": "This is normal behavior for Apple devices. Do not report."
},
{
"issue": "RTT averages are higher then average",
"resolution": "Fluctuation is normal, and there is no need to report anything within 5s of the average RTT."
},
{
"issue": "Temperatures are higher then average",
"resolution": "Fluctuation is normal, and there is no need to report anything within 5deg Celcius of the average Temperature."
}
]

1
log_position.txt Executable file
View File

@@ -0,0 +1 @@
82868478

File diff suppressed because it is too large Load Diff

556
monitor_agent.py Normal file → Executable file
View File

@@ -6,22 +6,71 @@ import subprocess
import ollama
from discord_webhook import DiscordWebhook
import requests
import data_storage
import database as data_storage
import re
import os
from datetime import datetime, timezone
import pingparsing
import nmap
import logging
from logging.handlers import TimedRotatingFileHandler
import docker
import schedule
# Load configuration
import config
from syslog_rfc5424_parser import parser
# --- Logging Configuration ---
LOG_FILE = "./tmp/monitoring_agent.log"
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Create a handler that rotates logs daily, keeping 1 backup
file_handler = TimedRotatingFileHandler(LOG_FILE, when="midnight", interval=1, backupCount=1)
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
# Create a handler for console output
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(file_handler)
logger.addHandler(console_handler)
LOG_POSITION_FILE = 'log_position.txt'
AUTH_LOG_POSITION_FILE = 'auth_log_position.txt'
UFW_LOG_POSITION_FILE = 'ufw_log_position.txt'
# --- Data Ingestion & Parsing Functions ---
def get_ufw_logs():
"""Gets new lines from /var/log/ufw.log since the last check."""
try:
last_position = 0
if os.path.exists(UFW_LOG_POSITION_FILE):
with open(UFW_LOG_POSITION_FILE, 'r') as f:
last_position = int(f.read())
with open("/var/log/ufw.log", "r") as f:
f.seek(last_position)
log_lines = f.readlines()
current_position = f.tell()
with open(UFW_LOG_POSITION_FILE, 'w') as f:
f.write(str(current_position))
return log_lines
except FileNotFoundError:
logger.error("/var/log/ufw.log not found.")
return []
except Exception as e:
logger.error(f"Error reading ufw.log: {e}")
return []
def get_system_logs():
"""Gets new lines from /var/log/syslog since the last check."""
try:
@@ -48,13 +97,12 @@ def get_system_logs():
return {"syslog": parsed_logs}
except FileNotFoundError:
print("Error: /var/log/syslog not found.")
logger.error("/var/log/syslog not found.")
return {"syslog": []}
except Exception as e:
print(f"Error reading syslog: {e}")
logger.error(f"Error reading syslog: {e}")
return {"syslog": []}
import pingparsing
def get_network_metrics():
"""Gets network metrics by pinging 8.8.8.8."""
@@ -66,48 +114,61 @@ def get_network_metrics():
result = transmitter.ping()
return ping_parser.parse(result).as_dict()
except Exception as e:
print(f"Error getting network metrics: {e}")
logger.error(f"Error getting network metrics: {e}")
return {"error": "ping command failed"}
def get_cpu_temperature():
"""Gets the CPU temperature using the sensors command."""
def get_sensor_data():
"""Gets all sensor data at once."""
try:
sensors_output = subprocess.check_output(["sensors"], text=True)
# Use regex to find the CPU temperature
match = re.search(r"Package id 0:\s+\+([\d\.]+)", sensors_output)
if match:
return {"cpu_temperature": float(match.group(1))}
else:
return {"cpu_temperature": "N/A"}
return subprocess.check_output(["sensors"], text=True)
except (subprocess.CalledProcessError, FileNotFoundError):
print("Error: 'sensors' command not found. Please install lm-sensors.")
logger.error("'sensors' command not found. Please install lm-sensors.")
return None
def get_cpu_temperature(sensors_output):
"""Gets the CPU temperature from the sensors output."""
if not sensors_output:
return {"cpu_temperature": "N/A"}
# Use regex to find the CPU temperature
match = re.search(r"Package id 0:\s+\+([\d\.]+)", sensors_output)
if match:
return {"cpu_temperature": float(match.group(1))}
else:
return {"cpu_temperature": "N/A"}
def get_gpu_temperature():
"""Gets the GPU temperature using the sensors command."""
try:
sensors_output = subprocess.check_output(["sensors"], text=True)
# Use regex to find the GPU temperature for amdgpu
match = re.search(r"edge:\s+\+([\d\.]+)", sensors_output)
def get_gpu_temperature(sensors_output):
"""Gets the GPU temperature from the sensors output."""
if not sensors_output:
return {"gpu_temperature": "N/A"}
# Use regex to find the GPU temperature for amdgpu
match = re.search(r"edge:\s+\+([\d\.]+)", sensors_output)
if match:
return {"gpu_temperature": float(match.group(1))}
else:
# if amdgpu not found, try radeon
match = re.search(r"temp1:\s+\+([\d\.]+)", sensors_output)
if match:
return {"gpu_temperature": float(match.group(1))}
else:
# if amdgpu not found, try radeon
match = re.search(r"temp1:\s+\+([\d\.]+)", sensors_output)
if match:
return {"gpu_temperature": float(match.group(1))}
else:
return {"gpu_temperature": "N/A"}
except (subprocess.CalledProcessError, FileNotFoundError):
print("Error: 'sensors' command not found. Please install lm-sensors.")
return {"gpu_temperature": "N/A"}
return {"gpu_temperature": "N/A"}
def get_login_attempts():
"""Gets system login attempts from /var/log/auth.log."""
"""Gets system login attempts from /var/log/auth.log since the last check."""
try:
last_position = 0
if os.path.exists(AUTH_LOG_POSITION_FILE):
with open(AUTH_LOG_POSITION_FILE, 'r') as f:
last_position = int(f.read())
with open("/var/log/auth.log", "r") as f:
f.seek(last_position)
log_lines = f.readlines()
current_position = f.tell()
with open(AUTH_LOG_POSITION_FILE, 'w') as f:
f.write(str(current_position))
failed_logins = []
for line in log_lines:
if "Failed password" in line:
@@ -115,129 +176,241 @@ def get_login_attempts():
return {"failed_login_attempts": failed_logins}
except FileNotFoundError:
print("Error: /var/log/auth.log not found.")
logger.error("/var/log/auth.log not found.")
return {"failed_login_attempts": []}
except Exception as e:
print(f"Error reading login attempts: {e}")
logger.error(f"Error reading login attempts: {e}")
return {"failed_logins": []}
def get_nmap_scan_results():
"""Performs an Nmap scan and returns the results."""
"""Performs an Nmap scan and returns a structured summary."""
try:
nm = nmap.PortScanner()
scan_options = config.NMAP_SCAN_OPTIONS
if os.geteuid() != 0 and "-sS" in scan_options:
print("Warning: Nmap -sS scan requires root privileges. Falling back to -sT.")
logger.warning("Nmap -sS scan requires root privileges. Falling back to -sT.")
scan_options = scan_options.replace("-sS", "-sT")
scan_results = nm.scan(hosts=config.NMAP_TARGETS, arguments=scan_options)
return scan_results
# Process the results into a more structured format
processed_results = {"hosts": []}
if "scan" in scan_results:
for host, scan_data in scan_results["scan"].items():
host_info = {
"ip": host,
"status": scan_data.get("status", {}).get("state", "unknown"),
"hostname": scan_data.get("hostnames", [{}])[0].get("name", ""),
"open_ports": []
}
if "tcp" in scan_data:
for port, port_data in scan_data["tcp"].items():
if port_data.get("state") == "open":
host_info["open_ports"].append({
"port": port,
"service": port_data.get("name", ""),
"product": port_data.get("product", ""),
"version": port_data.get("version", "")
})
processed_results["hosts"].append(host_info)
return processed_results
except Exception as e:
print(f"Error performing Nmap scan: {e}")
logger.error(f"Error performing Nmap scan: {e}")
return {"error": "Nmap scan failed"}
# --- LLM Interaction Function ---
def get_docker_container_status():
"""Gets the status of configured Docker containers."""
if not config.DOCKER_CONTAINERS_TO_MONITOR:
return {"docker_container_status": {}}
def analyze_data_with_llm(data, baselines):
"""Analyzes data with the local LLM."""
with open("CONSTRAINTS.md", "r") as f:
constraints = f.read()
try:
client = docker.from_env()
containers = client.containers.list(all=True)
status = {}
for container in containers:
if container.name in config.DOCKER_CONTAINERS_TO_MONITOR:
status[container.name] = container.status
return {"docker_container_status": status}
except Exception as e:
logger.error(f"Error getting Docker container status: {e}")
return {"docker_container_status": {}}
with open("known_issues.json", "r") as f:
known_issues = json.load(f)
# --- Data Analysis ---
# Compare current nmap results with baseline
nmap_changes = {"new_hosts": [], "changed_ports": {}}
def analyze_data_locally(data, baselines, known_issues, port_applications):
"""Analyzes the collected data to find anomalies without using an LLM."""
anomalies = []
# Temperature checks
cpu_temp = data.get("cpu_temperature", {}).get("cpu_temperature")
gpu_temp = data.get("gpu_temperature", {}).get("gpu_temperature")
baseline_cpu_temp = baselines.get("average_cpu_temperature")
baseline_gpu_temp = baselines.get("average_gpu_temperature")
if isinstance(cpu_temp, (int, float)) and isinstance(baseline_cpu_temp, (int, float)):
if abs(cpu_temp - baseline_cpu_temp) > 5:
anomalies.append({
"severity": "medium",
"reason": f"CPU temperature deviation detected. Current: {cpu_temp}°C, Baseline: {baseline_cpu_temp}°C"
})
if isinstance(gpu_temp, (int, float)) and isinstance(baseline_gpu_temp, (int, float)):
if abs(gpu_temp - baseline_gpu_temp) > 5:
anomalies.append({
"severity": "medium",
"reason": f"GPU temperature deviation detected. Current: {gpu_temp}°C, Baseline: {baseline_gpu_temp}°C"
})
# Network RTT check
current_rtt = data.get("network_metrics", {}).get("rtt_avg")
baseline_rtt = baselines.get("average_rtt_avg")
if isinstance(current_rtt, (int, float)) and isinstance(baseline_rtt, (int, float)):
if abs(current_rtt - baseline_rtt) > 10000:
anomalies.append({
"severity": "high",
"reason": f"High network RTT fluctuation detected. Current: {current_rtt}ms, Baseline: {baseline_rtt}ms"
})
# Failed login attempts check
failed_logins = data.get("login_attempts", {}).get("failed_login_attempts")
if failed_logins:
anomalies.append({
"severity": "high",
"reason": f"{len(failed_logins)} failed login attempts detected."
})
# Nmap scan changes check
if "nmap_results" in data and "host_ports" in baselines:
current_hosts = set(data["nmap_results"].get("scan", {}).keys())
current_hosts_info = {host['ip']: host for host in data["nmap_results"].get("hosts", [])}
current_hosts = set(current_hosts_info.keys())
baseline_hosts = set(baselines["host_ports"].keys())
# New hosts
nmap_changes["new_hosts"] = sorted(list(current_hosts - baseline_hosts))
new_hosts = sorted(list(current_hosts - baseline_hosts))
for host in new_hosts:
anomalies.append({
"severity": "high",
"reason": f"New host detected on the network: {host}"
})
# Changed ports on existing hosts
for host in current_hosts.intersection(baseline_hosts):
current_ports = set()
if "tcp" in data["nmap_results"]["scan"][host]:
for port, port_data in data["nmap_results"]["scan"][host]["tcp"].items():
if port_data["state"] == "open":
current_ports.add(port)
baseline_ports = set(baselines["host_ports"].get(host, []))
for host_ip in current_hosts.intersection(baseline_hosts):
current_ports = set(p['port'] for p in current_hosts_info[host_ip].get("open_ports", []))
baseline_ports = set(baselines["host_ports"].get(host_ip, []))
newly_opened = sorted(list(current_ports - baseline_ports))
newly_closed = sorted(list(baseline_ports - current_ports))
for port in newly_opened:
port_info = port_applications.get(str(port), "Unknown")
anomalies.append({
"severity": "medium",
"reason": f"New port opened on {host_ip}: {port} ({port_info})"
})
if newly_opened or newly_closed:
nmap_changes["changed_ports"][host] = {"opened": newly_opened, "closed": newly_closed}
# Docker container status check
docker_status = data.get("docker_container_status", {}).get("docker_container_status")
if docker_status:
for container_name, status in docker_status.items():
if status != "running":
anomalies.append({
"severity": "high",
"reason": f"Docker container '{container_name}' is not running. Current status: {status}"
})
prompt = f"""
**Role:** You are a dedicated and expert system administrator. Your primary role is to identify anomalies and provide concise, actionable reports.
# UFW log analysis
ufw_logs = data.get("ufw_logs", [])
if ufw_logs:
blocked_ips = {}
for log_line in ufw_logs:
if "[UFW BLOCK]" in log_line:
match = re.search(r"SRC=([\d\.]+)", log_line)
if match:
ip = match.group(1)
blocked_ips[ip] = blocked_ips.get(ip, 0) + 1
for ip, count in blocked_ips.items():
if count > 10:
anomalies.append({
"severity": "medium",
"reason": f"High number of blocked connections ({count}) from IP address: {ip}"
})
**Instruction:** Analyze the following system and network data for any activity that appears out of place or different. Consider unusual values, errors, or unexpected patterns as anomalies. Compare the current data with the historical baseline data to identify significant deviations. Consult the known issues feed to avoid flagging resolved or expected issues. Pay special attention to the Nmap scan results for any new or unexpected open ports.
return anomalies
**Context:**
Here is the system data in JSON format for your analysis: {json.dumps(data, indent=2)}
# --- LLM Interaction Function ---
**Historical Baseline Data:**
{json.dumps(baselines, indent=2)}
def build_llm_prompt(anomalies):
"""Builds the prompt for the LLM to generate a report from anomalies."""
return f"""
**Role:** You are a dedicated and expert system administrator. Your primary role is to provide a concise, actionable report based on a list of pre-identified anomalies.
**Nmap Scan Changes:**
{json.dumps(nmap_changes, indent=2)}
**Instruction:** Please synthesize the following list of anomalies into a single, human-readable report. The report should be a single JSON object with two keys: "severity" and "reason". The "severity" should be the highest severity from the list of anomalies. The "reason" should be a summary of all the anomalies.
**Known Issues Feed:**
{json.dumps(known_issues, indent=2)}
**Anomalies:**
{json.dumps(anomalies, indent=2)}
**Constraints and Guidelines:**
{constraints}
**Output Request:** If you find an anomaly, provide a report as a single JSON object with two keys: "severity" and "reason". The "severity" must be one of "high", "medium", "low", or "none". The "reason" must be a natural language explanation of the anomaly. If no anomaly is found, return a single JSON object with "severity" set to "none" and "reason" as an empty string. Do not wrap the JSON in markdown or any other formatting.
**Reasoning Hint:** Think step by step to come to your conclusion. This is very important.
**Output Request:** Provide a report as a single JSON object with two keys: "severity" and "reason". The "severity" must be one of "high", "medium", "low", or "none". The "reason" must be a natural language explanation of the anomaly. If no anomaly is found, return a single JSON object with "severity" set to "none" and "reason" as an empty string. Do not wrap the JSON in markdown or any other formatting. Only return the JSON, and nothing else.
"""
def generate_llm_report(anomalies):
"""Generates a report from a list of anomalies using the local LLM."""
logger.info("Generating LLM report...")
if not anomalies:
return {"severity": "none", "reason": ""}
prompt = build_llm_prompt(anomalies)
try:
response = ollama.generate(model="llama3.1:8b", prompt=prompt)
# Sanitize the response to ensure it's valid JSON
response = ollama.generate(model="phi4-mini", prompt=prompt)
sanitized_response = response['response'].strip()
# Find the first '{' and the last '}' to extract the JSON object
start_index = sanitized_response.find('{')
end_index = sanitized_response.rfind('}')
if start_index != -1 and end_index != -1:
json_string = sanitized_response[start_index:end_index+1]
try:
return json.loads(json_string)
except json.JSONDecodeError:
# If parsing a single object fails, try parsing as a list
try:
json_list = json.loads(json_string)
if isinstance(json_list, list) and json_list:
return json_list[0] # Return the first object in the list
except json.JSONDecodeError as e:
print(f"Error decoding LLM response: {e}")
# Fallback for invalid JSON
return {{"severity": "low", "reason": response['response'].strip()}} # type: ignore
else:
# Handle cases where the response is not valid JSON
print(f"LLM returned a non-JSON response: {sanitized_response}")
return {{"severity": "low", "reason": sanitized_response}} # type: ignore
# Extract JSON from the response
try:
# Find the first '{' and the last '}' to extract the JSON object
start_index = sanitized_response.find('{')
end_index = sanitized_response.rfind('}')
if start_index != -1 and end_index != -1:
json_string = sanitized_response[start_index:end_index+1]
llm_response = json.loads(json_string)
logger.info(f"LLM Response: {llm_response}")
return llm_response
else:
# Handle cases where the response is not valid JSON
logger.warning(f"LLM returned a non-JSON response: {sanitized_response}")
return {"severity": "low", "reason": sanitized_response}
except json.JSONDecodeError as e:
logger.error(f"Error decoding LLM response: {e}")
# Fallback for invalid JSON
return {"severity": "low", "reason": sanitized_response}
except Exception as e:
print(f"Error interacting with LLM: {e}")
logger.error(f"Error interacting with LLM: {e}")
return None
# --- Alerting Functions ---
def send_discord_alert(message):
def send_discord_alert(llm_response, combined_data):
"""Sends an alert to Discord."""
reason = llm_response.get('reason', 'No reason provided.')
message = f"""**High Severity Alert:**
> {reason}
**Relevant Data:**
```json
{json.dumps(combined_data, indent=2)}
```"""
webhook = DiscordWebhook(url=config.DISCORD_WEBHOOK_URL, content=message)
try:
response = webhook.execute()
if response.status_code == 200:
print("Discord alert sent successfully.")
logger.info("Discord alert sent successfully.")
else:
print(f"Error sending Discord alert: {response.status_code} - {response.content}")
logger.error(f"Error sending Discord alert: {response.status_code} - {response.content}")
except Exception as e:
print(f"Error sending Discord alert: {e}")
logger.error(f"Error sending Discord alert: {e}")
def send_google_home_alert(message):
"""Sends an alert to a Google Home speaker via Home Assistant."""
@@ -246,8 +419,8 @@ def send_google_home_alert(message):
response = ollama.generate(model="llama3.1:8b", prompt=f"Summarize the following message in a single sentence: {message}")
simplified_message = response['response'].strip()
except Exception as e:
print(f"Error summarizing message: {e}")
simplified_message = message.split('.')[0] # Take the first sentence as a fallback
logger.error(f"Error summarizing message: {e}")
simplified_.message = message.split('.')[0] # Take the first sentence as a fallback
url = f"{config.HOME_ASSISTANT_URL}/api/services/tts/speak"
headers = {
@@ -257,99 +430,120 @@ def send_google_home_alert(message):
data = {
"entity_id": "all",
"media_player_entity_id": config.GOOGLE_HOME_SPEAKER_ID,
"message": simplified_message,
"message": simplified_message, # type: ignore
}
try:
response = requests.post(url, headers=headers, json=data)
if response.status_code == 200:
print("Google Home alert sent successfully.")
logger.info("Google Home alert sent successfully.")
else:
print(f"Error sending Google Home alert: {response.status_code} - {response.text}")
logger.error(f"Error sending Google Home alert: {response.status_code} - {response.text}")
except Exception as e:
print(f"Error sending Google Home alert: {e}")
logger.error(f"Error sending Google Home alert: {e}")
# --- Main Script Logic ---
def is_alerting_time():
"""Checks if the current time is within the alerting window (9am - 12am)."""
current_hour = datetime.now().hour
return 9 <= current_hour < 24
daily_events = []
if __name__ == "__main__":
if config.TEST_MODE:
print("Running in test mode...")
system_logs = get_system_logs()
network_metrics = get_network_metrics()
cpu_temp = get_cpu_temperature()
gpu_temp = get_gpu_temperature()
login_attempts = get_login_attempts()
def send_daily_recap():
"""Sends a daily recap of events to Discord."""
global daily_events
if daily_events:
recap_message = "**Daily Recap:**\n" + "\n".join(daily_events)
# Split the message into chunks of 2000 characters
message_chunks = [recap_message[i:i+2000] for i in range(0, len(recap_message), 2000)]
for chunk in message_chunks:
webhook = DiscordWebhook(url=config.DISCORD_WEBHOOK_URL, content=chunk)
try:
response = webhook.execute()
if response.status_code == 200:
logger.info("Daily recap chunk sent successfully.")
else:
logger.error(f"Error sending daily recap chunk: {response.status_code} - {response.content}")
except Exception as e:
logger.error(f"Error sending daily recap chunk: {e}")
time.sleep(1) # Wait 1 second between chunks to avoid rate limiting
daily_events = [] # Reset for the next day
def run_monitoring_cycle(nmap_scan_counter):
"""Runs a single monitoring cycle."""
logger.info("Running monitoring cycle...")
system_logs = get_system_logs()
network_metrics = get_network_metrics()
sensors_output = get_sensor_data()
cpu_temp = get_cpu_temperature(sensors_output)
gpu_temp = get_gpu_temperature(sensors_output)
login_attempts = get_login_attempts()
docker_container_status = get_docker_container_status()
ufw_logs = get_ufw_logs()
nmap_results = None
if nmap_scan_counter == 0:
nmap_results = get_nmap_scan_results()
nmap_scan_counter = (nmap_scan_counter + 1) % 4 # Run nmap scan every 4th cycle (20 minutes)
if system_logs and network_metrics:
combined_data = {
"timestamp": datetime.now(timezone.utc).isoformat(),
"system_logs": system_logs,
"network_metrics": network_metrics,
"cpu_temperature": cpu_temp,
"gpu_temperature": gpu_temp,
"login_attempts": login_attempts,
"nmap_results": nmap_results
}
data_storage.store_data(combined_data)
if system_logs and network_metrics:
combined_data = {
"timestamp": datetime.now(timezone.utc).isoformat(),
"system_logs": system_logs,
"network_metrics": network_metrics,
"cpu_temperature": cpu_temp,
"gpu_temperature": gpu_temp,
"login_attempts": login_attempts,
"docker_container_status": docker_container_status,
"ufw_logs": ufw_logs
}
llm_response = analyze_data_with_llm(combined_data, data_storage.calculate_baselines())
if nmap_results:
combined_data["nmap_results"] = nmap_results
data_storage.store_data(combined_data)
data_storage.enforce_retention_policy()
with open("known_issues.json", "r") as f:
known_issues = json.load(f)
with open("port_applications.json", "r") as f:
port_applications = json.load(f)
baselines = data_storage.calculate_baselines()
anomalies = analyze_data_locally(combined_data, baselines, known_issues, port_applications)
if anomalies:
logger.info(f"Detected {len(anomalies)} anomalies: {anomalies}")
llm_response = generate_llm_report(anomalies)
if llm_response and llm_response.get('severity') != "none":
print(f"Anomaly detected: {llm_response.get('reason')}")
if llm_response.get('severity') == "high":
send_discord_alert(llm_response.get('reason'))
daily_events.append(llm_response.get('reason'))
if llm_response.get('severity') == "high" and is_alerting_time():
send_discord_alert(llm_response, combined_data)
send_google_home_alert(llm_response.get('reason'))
else:
print("No anomaly detected.")
return nmap_scan_counter
def main():
"""Main function to run the monitoring agent."""
data_storage.initialize_database()
if config.TEST_MODE:
logger.info("Running in test mode...")
run_monitoring_cycle(0)
else:
schedule.every().day.at(config.DAILY_RECAP_TIME).do(send_daily_recap)
nmap_scan_counter = 0
while True:
print("Running monitoring cycle...")
system_logs = get_system_logs()
network_metrics = get_network_metrics()
cpu_temp = get_cpu_temperature()
gpu_temp = get_gpu_temperature()
login_attempts = get_login_attempts()
nmap_results = None
if nmap_scan_counter == 0:
nmap_results = get_nmap_scan_results()
nmap_scan_counter = (nmap_scan_counter + 1) % 4 # Run nmap scan every 4th cycle (20 minutes)
if system_logs and network_metrics:
combined_data = {
"timestamp": datetime.now(timezone.utc).isoformat(),
"system_logs": system_logs,
"network_metrics": network_metrics,
"cpu_temperature": cpu_temp,
"gpu_temperature": gpu_temp,
"login_attempts": login_attempts
}
if nmap_results:
combined_data["nmap_results"] = nmap_results
data_storage.store_data(combined_data)
llm_response = analyze_data_with_llm(combined_data, data_storage.calculate_baselines())
if llm_response and llm_response.get('severity') != "none":
daily_events.append(llm_response.get('reason'))
if llm_response.get('severity') == "high":
send_discord_alert(llm_response.get('reason'))
send_google_home_alert(llm_response.get('reason'))
# Daily Recap Logic
current_time = time.strftime("%H:%M")
if current_time == config.DAILY_RECAP_TIME and daily_events:
recap_message = "\n".join(daily_events)
send_discord_alert(f"**Daily Recap:**\n{recap_message}")
daily_events = [] # Reset for the next day
nmap_scan_counter = run_monitoring_cycle(nmap_scan_counter)
schedule.run_pending()
time.sleep(300) # Run every 5 minutes
if __name__ == "__main__":
main()

19
port_applications.json Executable file
View File

@@ -0,0 +1,19 @@
{
"20": "FTP",
"21": "FTP",
"22": "SSH",
"23": "Telnet",
"25": "SMTP",
"53": "DNS",
"80": "HTTP",
"110": "POP3",
"143": "IMAP",
"443": "HTTPS",
"445": "SMB",
"587": "SMTP",
"993": "IMAPS",
"995": "POP3S",
"3306": "MySQL",
"3389": "RDP"
}

8
requirements.txt Normal file → Executable file
View File

@@ -1,6 +1,8 @@
discord-webhook
pingparsing
requests
discord-webhook
ollama
syslog-rfc5424-parser
pingparsing
python-nmap
python-nmap
schedule
docker

22
test_output.log Executable file
View File

@@ -0,0 +1,22 @@
Traceback (most recent call last):
File "/home/artanis/Documents/LLM-Powered-Monitoring-Agent/monitor_agent.py", line 31, in <module>
file_handler = TimedRotatingFileHandler(LOG_FILE, when="midnight", interval=1, backupCount=1)
File "/home/artanis/.pyenv/versions/3.13.1/lib/python3.13/logging/handlers.py", line 223, in __init__
BaseRotatingHandler.__init__(self, filename, 'a', encoding=encoding,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
delay=delay, errors=errors)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/artanis/.pyenv/versions/3.13.1/lib/python3.13/logging/handlers.py", line 64, in __init__
logging.FileHandler.__init__(self, filename, mode=mode,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^
encoding=encoding, delay=delay,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
errors=errors)
^^^^^^^^^^^^^^
File "/home/artanis/.pyenv/versions/3.13.1/lib/python3.13/logging/__init__.py", line 1218, in __init__
StreamHandler.__init__(self, self._open())
~~~~~~~~~~^^
File "/home/artanis/.pyenv/versions/3.13.1/lib/python3.13/logging/__init__.py", line 1247, in _open
return open_func(self.baseFilename, self.mode,
encoding=self.encoding, errors=self.errors)
PermissionError: [Errno 13] Permission denied: '/home/artanis/Documents/LLM-Powered-Monitoring-Agent/monitoring_agent.log'

479
tmp/monitoring_agent.log Executable file
View File

@@ -0,0 +1,479 @@
2025-09-15 00:01:21,407 - INFO - Running monitoring cycle...
2025-09-15 00:31:11,922 - INFO - Running monitoring cycle...
2025-09-15 00:36:14,048 - INFO - Running monitoring cycle...
2025-09-15 00:41:16,122 - INFO - Running monitoring cycle...
2025-09-15 00:46:18,223 - INFO - Running monitoring cycle...
2025-09-15 00:53:17,684 - INFO - Running monitoring cycle...
2025-09-15 00:58:19,786 - INFO - Running monitoring cycle...
2025-09-15 01:03:21,873 - INFO - Running monitoring cycle...
2025-09-15 01:08:23,956 - INFO - Running monitoring cycle...
2025-09-15 01:15:53,304 - INFO - Running monitoring cycle...
2025-09-15 01:20:55,400 - INFO - Running monitoring cycle...
2025-09-15 01:25:57,573 - INFO - Running monitoring cycle...
2025-09-15 01:30:59,656 - INFO - Running monitoring cycle...
2025-09-15 01:49:24,983 - INFO - Running monitoring cycle...
2025-09-15 01:54:27,106 - INFO - Running monitoring cycle...
2025-09-15 01:59:29,198 - INFO - Running monitoring cycle...
2025-09-15 02:04:31,335 - INFO - Running monitoring cycle...
2025-09-15 02:05:49,829 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 02:05:49,829 - INFO - Generating LLM report...
2025-09-15 02:05:54,309 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues with a high severity level because it has exited unexpectedly."}
2025-09-15 02:10:54,309 - INFO - Running monitoring cycle...
2025-09-15 02:10:56,390 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 02:10:56,390 - INFO - Generating LLM report...
2025-09-15 02:11:00,906 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped (exited). This may lead to Minecraft service disruptions."}
2025-09-15 02:16:00,906 - INFO - Running monitoring cycle...
2025-09-15 02:16:02,986 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 02:16:02,986 - INFO - Generating LLM report...
2025-09-15 02:16:07,417 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues; it has exited unexpectedly without starting."}
2025-09-15 02:21:07,417 - INFO - Running monitoring cycle...
2025-09-15 02:21:09,515 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 02:21:09,515 - INFO - Generating LLM report...
2025-09-15 02:21:13,947 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' has exited unexpectedly; it is currently stopped."}
2025-09-15 02:26:13,948 - INFO - Running monitoring cycle...
2025-09-15 02:28:09,890 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 02:28:09,890 - INFO - Generating LLM report...
2025-09-15 02:28:14,339 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped; it exited unexpectedly."}
2025-09-15 02:33:14,339 - INFO - Running monitoring cycle...
2025-09-15 02:33:16,482 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 02:33:16,482 - INFO - Generating LLM report...
2025-09-15 02:33:20,965 - INFO - LLM Response: {'severity': 'high', 'reason': "The Docker container named 'minecraft' is currently stopped; its status shows it has exited."}
2025-09-15 02:38:20,965 - INFO - Running monitoring cycle...
2025-09-15 02:38:23,059 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 02:38:23,059 - INFO - Generating LLM report...
2025-09-15 02:38:27,574 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing a critical failure; it has exited unexpectedly without proper shutdown."}
2025-09-15 02:43:27,574 - INFO - Running monitoring cycle...
2025-09-15 02:43:29,681 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 02:43:29,681 - INFO - Generating LLM report...
2025-09-15 02:43:34,112 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently exited; it should be running."}
2025-09-15 02:48:34,112 - INFO - Running monitoring cycle...
2025-09-15 02:50:08,317 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 02:50:08,317 - INFO - Generating LLM report...
2025-09-15 02:50:12,959 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing a high-severity issue due to it being currently stopped; its status indicates that it's exited."}
2025-09-15 02:55:12,959 - INFO - Running monitoring cycle...
2025-09-15 02:55:15,068 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 02:55:15,068 - INFO - Generating LLM report...
2025-09-15 02:55:19,562 - INFO - LLM Response: {'severity': 'high', 'reason': "The Docker container named 'minecraft' has exited; it is currently stopped."}
2025-09-15 03:00:19,563 - INFO - Running monitoring cycle...
2025-09-15 03:00:21,651 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 03:00:21,651 - INFO - Generating LLM report...
2025-09-15 03:00:26,074 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently exited; it needs restarting."}
2025-09-15 03:05:26,074 - INFO - Running monitoring cycle...
2025-09-15 03:05:28,216 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 03:05:28,216 - INFO - Generating LLM report...
2025-09-15 03:05:32,610 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently exited but expected to be running."}
2025-09-15 03:10:32,610 - INFO - Running monitoring cycle...
2025-09-15 03:13:12,236 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 03:13:12,236 - INFO - Generating LLM report...
2025-09-15 03:13:16,630 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues; it has exited prematurely."}
2025-09-15 03:18:16,630 - INFO - Running monitoring cycle...
2025-09-15 03:18:18,787 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 03:18:18,787 - INFO - Generating LLM report...
2025-09-15 03:18:23,312 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing a critical issue; it has exited unexpectedly without starting."}
2025-09-15 03:23:23,312 - INFO - Running monitoring cycle...
2025-09-15 03:23:25,413 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 03:23:25,413 - INFO - Generating LLM report...
2025-09-15 03:23:29,917 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues with its operational status; it has exited unexpectedly."}
2025-09-15 03:28:29,917 - INFO - Running monitoring cycle...
2025-09-15 03:28:32,051 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 03:28:32,052 - INFO - Generating LLM report...
2025-09-15 03:28:36,665 - INFO - LLM Response: {'severity': 'high', 'reason': "The Docker container named 'minecraft' is currently stopped with status 'exited', which could indicate a failure to start correctly."}
2025-09-15 03:33:36,665 - INFO - Running monitoring cycle...
2025-09-15 03:54:15,994 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 03:54:15,994 - INFO - Generating LLM report...
2025-09-15 03:54:20,384 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is down; it has exited."}
2025-09-15 03:59:20,384 - INFO - Running monitoring cycle...
2025-09-15 03:59:22,474 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 03:59:22,474 - INFO - Generating LLM report...
2025-09-15 03:59:26,867 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped with status exited."}
2025-09-15 04:04:26,867 - INFO - Running monitoring cycle...
2025-09-15 04:04:28,958 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 04:04:28,958 - INFO - Generating LLM report...
2025-09-15 04:04:33,343 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped (exited)."}
2025-09-15 04:09:33,344 - INFO - Running monitoring cycle...
2025-09-15 04:09:35,442 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 04:09:35,442 - INFO - Generating LLM report...
2025-09-15 04:09:39,882 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently exited; it needs restarting."}
2025-09-15 04:14:39,882 - INFO - Running monitoring cycle...
2025-09-15 04:17:37,763 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 04:17:37,763 - INFO - Generating LLM report...
2025-09-15 04:17:42,223 - INFO - LLM Response: {'severity': 'high', 'reason': "The Docker container 'minecraft' is currently stopped with a status of exited."}
2025-09-15 04:22:42,224 - INFO - Running monitoring cycle...
2025-09-15 04:22:44,301 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 04:22:44,301 - INFO - Generating LLM report...
2025-09-15 04:22:48,808 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing a high severity issue because it has exited unexpectedly."}
2025-09-15 04:27:48,808 - INFO - Running monitoring cycle...
2025-09-15 04:27:50,896 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 04:27:50,896 - INFO - Generating LLM report...
2025-09-15 04:27:55,278 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently exited but should be running."}
2025-09-15 04:32:55,279 - INFO - Running monitoring cycle...
2025-09-15 04:32:57,383 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 04:32:57,383 - INFO - Generating LLM report...
2025-09-15 04:33:01,780 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues; it has exited unexpectedly."}
2025-09-15 04:38:01,781 - INFO - Running monitoring cycle...
2025-09-15 04:44:04,873 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 04:44:04,873 - INFO - Generating LLM report...
2025-09-15 04:44:09,313 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues since it has exited unexpectedly."}
2025-09-15 04:49:09,313 - INFO - Running monitoring cycle...
2025-09-15 04:49:11,409 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 04:49:11,410 - INFO - Generating LLM report...
2025-09-15 04:49:15,896 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues; it has exited without completing its intended function."}
2025-09-15 04:54:15,896 - INFO - Running monitoring cycle...
2025-09-15 04:54:17,996 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 04:54:17,996 - INFO - Generating LLM report...
2025-09-15 04:54:22,383 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped because it exited unexpectedly."}
2025-09-15 04:59:22,383 - INFO - Running monitoring cycle...
2025-09-15 04:59:24,512 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 04:59:24,512 - INFO - Generating LLM report...
2025-09-15 04:59:28,919 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped; it exited unexpectedly."}
2025-09-15 05:04:28,919 - INFO - Running monitoring cycle...
2025-09-15 05:06:54,084 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 05:06:54,085 - INFO - Generating LLM report...
2025-09-15 05:06:58,635 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is stopped with status exited; current state indicates it did not start properly."}
2025-09-15 05:11:58,635 - INFO - Running monitoring cycle...
2025-09-15 05:12:00,747 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 05:12:00,747 - INFO - Generating LLM report...
2025-09-15 05:12:05,264 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped (exited). It needs to be restarted."}
2025-09-15 05:17:05,265 - INFO - Running monitoring cycle...
2025-09-15 05:17:07,399 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 05:17:07,399 - INFO - Generating LLM report...
2025-09-15 05:17:11,941 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is stopped with status exited; this can cause application downtime if it was running."}
2025-09-15 05:22:11,941 - INFO - Running monitoring cycle...
2025-09-15 05:22:14,045 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 05:22:14,045 - INFO - Generating LLM report...
2025-09-15 05:22:18,427 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is down because it has exited unexpectedly."}
2025-09-15 05:27:18,428 - INFO - Running monitoring cycle...
2025-09-15 05:33:49,638 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 05:33:49,638 - INFO - Generating LLM report...
2025-09-15 05:33:54,110 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues; it has exited unexpectedly."}
2025-09-15 05:38:54,111 - INFO - Running monitoring cycle...
2025-09-15 05:38:56,191 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 05:38:56,191 - INFO - Generating LLM report...
2025-09-15 05:39:00,598 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues; it has exited without running."}
2025-09-15 05:44:00,598 - INFO - Running monitoring cycle...
2025-09-15 05:44:02,752 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 05:44:02,752 - INFO - Generating LLM report...
2025-09-15 05:44:07,209 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is not running due to its current status being exited."}
2025-09-15 05:49:07,210 - INFO - Running monitoring cycle...
2025-09-15 05:49:09,336 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 05:49:09,336 - INFO - Generating LLM report...
2025-09-15 05:49:13,748 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped with status exited."}
2025-09-15 05:54:13,749 - INFO - Running monitoring cycle...
2025-09-15 06:01:11,734 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:01:11,735 - INFO - Generating LLM report...
2025-09-15 06:01:16,281 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues; it has exited without completing its intended task."}
2025-09-15 06:06:16,281 - INFO - Running monitoring cycle...
2025-09-15 06:06:18,358 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:06:18,358 - INFO - Generating LLM report...
2025-09-15 06:06:22,810 - INFO - LLM Response: {'severity': 'high', 'reason': "The Docker container 'minecraft' is currently not running; it exited unexpectedly."}
2025-09-15 06:11:22,810 - INFO - Running monitoring cycle...
2025-09-15 06:11:24,896 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:11:24,896 - INFO - Generating LLM report...
2025-09-15 06:11:29,368 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues with its operational status; it has exited unexpectedly."}
2025-09-15 06:16:29,368 - INFO - Running monitoring cycle...
2025-09-15 06:16:31,452 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:16:31,452 - INFO - Generating LLM report...
2025-09-15 06:16:35,863 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently exited; it needs restarting."}
2025-09-15 06:21:35,864 - INFO - Running monitoring cycle...
2025-09-15 06:26:27,967 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:26:27,967 - INFO - Generating LLM report...
2025-09-15 06:26:32,378 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues; it has exited unexpectedly."}
2025-09-15 06:31:32,378 - INFO - Running monitoring cycle...
2025-09-15 06:31:34,493 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:31:34,494 - INFO - Generating LLM report...
2025-09-15 06:31:39,022 - INFO - LLM Response: {'severity': 'high', 'reason': "The Docker container named 'minecraft' is currently stopped; its status indicates that it has exited."}
2025-09-15 06:36:39,022 - INFO - Running monitoring cycle...
2025-09-15 06:36:41,124 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:36:41,124 - INFO - Generating LLM report...
2025-09-15 06:36:45,614 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently exited; it was previously running but has stopped without apparent cause."}
2025-09-15 06:41:45,614 - INFO - Running monitoring cycle...
2025-09-15 06:41:47,715 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:41:47,715 - INFO - Generating LLM report...
2025-09-15 06:41:52,176 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues; it has exited without starting."}
2025-09-15 06:46:52,177 - INFO - Running monitoring cycle...
2025-09-15 06:47:20,506 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:47:20,506 - INFO - Generating LLM report...
2025-09-15 06:47:24,980 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped with status 'exited'."}
2025-09-15 06:52:24,980 - INFO - Running monitoring cycle...
2025-09-15 06:52:27,071 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:52:27,071 - INFO - Generating LLM report...
2025-09-15 06:52:31,558 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing a critical issue since it exited; it's currently non-operational."}
2025-09-15 06:57:31,559 - INFO - Running monitoring cycle...
2025-09-15 06:57:33,644 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 06:57:33,644 - INFO - Generating LLM report...
2025-09-15 06:57:38,061 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues since it exited unexpectedly without running."}
2025-09-15 07:02:38,061 - INFO - Running monitoring cycle...
2025-09-15 07:02:40,160 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:02:40,160 - INFO - Generating LLM report...
2025-09-15 07:02:44,585 - INFO - LLM Response: {'severity': 'high', 'reason': "The Docker container named 'minecraft' is currently stopped because it has exited."}
2025-09-15 07:07:44,585 - INFO - Running monitoring cycle...
2025-09-15 07:08:51,220 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:08:51,220 - INFO - Generating LLM report...
2025-09-15 07:08:55,675 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped; it exited unexpectedly."}
2025-09-15 07:13:55,675 - INFO - Running monitoring cycle...
2025-09-15 07:13:57,772 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:13:57,773 - INFO - Generating LLM report...
2025-09-15 07:14:02,247 - INFO - LLM Response: {'severity': 'high', 'reason': "The Docker container named 'minecraft' has exited unexpectedly; it is currently stopped."}
2025-09-15 07:19:02,247 - INFO - Running monitoring cycle...
2025-09-15 07:19:04,378 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:19:04,378 - INFO - Generating LLM report...
2025-09-15 07:19:08,835 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped because it exited unexpectedly."}
2025-09-15 07:24:08,836 - INFO - Running monitoring cycle...
2025-09-15 07:24:10,941 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:24:10,941 - INFO - Generating LLM report...
2025-09-15 07:24:15,376 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing a critical issue: it has exited unexpectedly."}
2025-09-15 07:29:15,376 - INFO - Running monitoring cycle...
2025-09-15 07:31:35,749 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:31:35,749 - INFO - Generating LLM report...
2025-09-15 07:31:40,194 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues; it has exited unexpectedly."}
2025-09-15 07:36:40,195 - INFO - Running monitoring cycle...
2025-09-15 07:36:42,291 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:36:42,291 - INFO - Generating LLM report...
2025-09-15 07:36:46,704 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is reported missing; it exited unexpectedly."}
2025-09-15 07:41:46,705 - INFO - Running monitoring cycle...
2025-09-15 07:41:48,797 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:41:48,797 - INFO - Generating LLM report...
2025-09-15 07:41:53,308 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently exited; it was previously running but has stopped unexpectedly."}
2025-09-15 07:46:53,309 - INFO - Running monitoring cycle...
2025-09-15 07:46:55,406 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:46:55,406 - INFO - Generating LLM report...
2025-09-15 07:46:59,887 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is currently stopped (exited), which may lead to service disruption."}
2025-09-15 07:51:59,887 - INFO - Running monitoring cycle...
2025-09-15 07:54:25,483 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:54:25,483 - INFO - Generating LLM report...
2025-09-15 07:54:30,100 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing a high severity issue due to it being non-operational with its current status reported as exited."}
2025-09-15 07:59:30,100 - INFO - Running monitoring cycle...
2025-09-15 07:59:32,238 - INFO - Detected 1 anomalies: [{'severity': 'high', 'reason': "Docker container 'minecraft' is not running. Current status: exited"}]
2025-09-15 07:59:32,238 - INFO - Generating LLM report...
2025-09-15 07:59:36,730 - INFO - LLM Response: {'severity': 'high', 'reason': "Docker container 'minecraft' is experiencing issues since it exited without completing its intended tasks."}
2025-09-15 08:04:36,731 - INFO - Running monitoring cycle...
2025-09-15 08:09:38,841 - INFO - Running monitoring cycle...
2025-09-15 08:14:40,943 - INFO - Running monitoring cycle...
2025-09-15 08:22:01,659 - INFO - Running monitoring cycle...
2025-09-15 08:27:03,759 - INFO - Running monitoring cycle...
2025-09-15 08:32:05,908 - INFO - Running monitoring cycle...
2025-09-15 08:37:08,055 - INFO - Running monitoring cycle...
2025-09-15 08:45:34,653 - INFO - Running monitoring cycle...
2025-09-15 08:50:36,768 - INFO - Running monitoring cycle...
2025-09-15 08:55:38,898 - INFO - Running monitoring cycle...
2025-09-15 09:00:40,997 - INFO - Running monitoring cycle...
2025-09-15 09:07:54,915 - INFO - Running monitoring cycle...
2025-09-15 09:12:57,048 - INFO - Running monitoring cycle...
2025-09-15 09:17:59,145 - INFO - Running monitoring cycle...
2025-09-15 09:23:01,297 - INFO - Running monitoring cycle...
2025-09-15 09:28:39,356 - INFO - Running monitoring cycle...
2025-09-15 09:33:41,445 - INFO - Running monitoring cycle...
2025-09-15 09:38:43,524 - INFO - Running monitoring cycle...
2025-09-15 09:43:45,620 - INFO - Running monitoring cycle...
2025-09-15 09:49:26,414 - INFO - Running monitoring cycle...
2025-09-15 09:54:28,554 - INFO - Running monitoring cycle...
2025-09-15 09:59:30,653 - INFO - Running monitoring cycle...
2025-09-15 10:04:32,778 - INFO - Running monitoring cycle...
2025-09-15 10:13:01,370 - INFO - Running monitoring cycle...
2025-09-15 10:18:03,453 - INFO - Running monitoring cycle...
2025-09-15 10:23:05,550 - INFO - Running monitoring cycle...
2025-09-15 10:28:07,634 - INFO - Running monitoring cycle...
2025-09-15 10:36:19,972 - INFO - Running monitoring cycle...
2025-09-15 10:41:22,091 - INFO - Running monitoring cycle...
2025-09-15 10:46:24,244 - INFO - Running monitoring cycle...
2025-09-15 10:51:26,346 - INFO - Running monitoring cycle...
2025-09-15 11:00:24,637 - INFO - Running monitoring cycle...
2025-09-15 11:05:26,720 - INFO - Running monitoring cycle...
2025-09-15 11:10:28,819 - INFO - Running monitoring cycle...
2025-09-15 11:15:30,897 - INFO - Running monitoring cycle...
2025-09-15 11:24:21,912 - INFO - Running monitoring cycle...
2025-09-15 11:29:23,994 - INFO - Running monitoring cycle...
2025-09-15 11:34:26,089 - INFO - Running monitoring cycle...
2025-09-15 11:39:28,234 - INFO - Running monitoring cycle...
2025-09-15 11:50:22,435 - INFO - Running monitoring cycle...
2025-09-15 11:55:24,575 - INFO - Running monitoring cycle...
2025-09-15 12:00:26,724 - INFO - Running monitoring cycle...
2025-09-15 12:05:28,874 - INFO - Running monitoring cycle...
2025-09-15 12:12:34,647 - INFO - Running monitoring cycle...
2025-09-15 12:17:36,748 - INFO - Running monitoring cycle...
2025-09-15 12:22:38,907 - INFO - Running monitoring cycle...
2025-09-15 12:27:40,996 - INFO - Running monitoring cycle...
2025-09-15 12:34:57,190 - INFO - Running monitoring cycle...
2025-09-15 12:39:59,344 - INFO - Running monitoring cycle...
2025-09-15 12:42:28,467 - INFO - Running monitoring cycle...
2025-09-15 12:43:10,948 - INFO - Running monitoring cycle...
2025-09-15 12:43:13,084 - WARNING - Nmap -sS scan requires root privileges. Falling back to -sT.
2025-09-15 12:45:11,051 - INFO - Running in test mode...
2025-09-15 12:45:11,051 - INFO - Running monitoring cycle...
2025-09-15 12:45:13,146 - WARNING - Nmap -sS scan requires root privileges. Falling back to -sT.
2025-09-15 12:45:44,457 - INFO - Running in test mode...
2025-09-15 12:45:44,457 - INFO - Running monitoring cycle...
2025-09-15 12:45:46,590 - WARNING - Nmap -sS scan requires root privileges. Falling back to -sT.
2025-09-15 12:46:33,528 - INFO - Running in test mode...
2025-09-15 12:46:33,529 - INFO - Running monitoring cycle...
2025-09-15 12:46:35,614 - WARNING - Nmap -sS scan requires root privileges. Falling back to -sT.
2025-09-15 12:47:39,333 - INFO - Running in test mode...
2025-09-15 12:47:39,333 - INFO - Running monitoring cycle...
2025-09-15 12:47:41,432 - WARNING - Nmap -sS scan requires root privileges. Falling back to -sT.
2025-09-15 12:58:20,016 - DEBUG - Entering main
2025-09-15 12:58:20,016 - INFO - Running in test mode...
2025-09-15 12:58:20,016 - DEBUG - Entering run_monitoring_cycle
2025-09-15 12:58:20,016 - INFO - Running monitoring cycle...
2025-09-15 12:58:20,016 - DEBUG - Entering get_system_logs
2025-09-15 12:58:20,016 - DEBUG - Exiting get_system_logs
2025-09-15 12:58:20,016 - DEBUG - Entering get_network_metrics
2025-09-15 12:58:22,047 - DEBUG - Exiting get_network_metrics
2025-09-15 12:58:22,061 - DEBUG - Entering get_sensor_data
2025-09-15 12:58:22,078 - DEBUG - Exiting get_sensor_data
2025-09-15 12:58:22,078 - DEBUG - Entering get_cpu_temperature
2025-09-15 12:58:22,078 - DEBUG - Exiting get_cpu_temperature
2025-09-15 12:58:22,078 - DEBUG - Entering get_gpu_temperature
2025-09-15 12:58:22,078 - DEBUG - Exiting get_gpu_temperature
2025-09-15 12:58:22,079 - DEBUG - Entering get_login_attempts
2025-09-15 12:58:22,079 - DEBUG - Exiting get_login_attempts
2025-09-15 12:58:22,079 - DEBUG - Entering get_docker_container_status
2025-09-15 12:58:22,111 - DEBUG - Exiting get_docker_container_status
2025-09-15 12:58:22,113 - DEBUG - Entering get_nmap_scan_results
2025-09-15 12:58:22,117 - WARNING - Nmap -sS scan requires root privileges. Falling back to -sT.
2025-09-15 12:58:28,544 - DEBUG - Exiting get_nmap_scan_results
2025-09-15 12:58:28,552 - DEBUG - Entering analyze_data_locally
2025-09-15 12:58:28,553 - DEBUG - Exiting analyze_data_locally
2025-09-15 12:58:28,553 - DEBUG - Exiting run_monitoring_cycle
2025-09-15 12:58:28,553 - DEBUG - Exiting main
2025-09-15 12:58:31,241 - DEBUG - Entering main
2025-09-15 12:58:31,242 - INFO - Running in test mode...
2025-09-15 12:58:31,242 - DEBUG - Entering run_monitoring_cycle
2025-09-15 12:58:31,242 - INFO - Running monitoring cycle...
2025-09-15 12:58:31,242 - DEBUG - Entering get_system_logs
2025-09-15 12:58:31,242 - DEBUG - Exiting get_system_logs
2025-09-15 12:58:31,242 - DEBUG - Entering get_network_metrics
2025-09-15 12:58:33,272 - DEBUG - Exiting get_network_metrics
2025-09-15 12:58:33,275 - DEBUG - Entering get_sensor_data
2025-09-15 12:58:33,289 - DEBUG - Exiting get_sensor_data
2025-09-15 12:58:33,289 - DEBUG - Entering get_cpu_temperature
2025-09-15 12:58:33,289 - DEBUG - Exiting get_cpu_temperature
2025-09-15 12:58:33,289 - DEBUG - Entering get_gpu_temperature
2025-09-15 12:58:33,289 - DEBUG - Exiting get_gpu_temperature
2025-09-15 12:58:33,289 - DEBUG - Entering get_login_attempts
2025-09-15 12:58:33,290 - DEBUG - Exiting get_login_attempts
2025-09-15 12:58:33,290 - DEBUG - Entering get_docker_container_status
2025-09-15 12:58:33,319 - DEBUG - Exiting get_docker_container_status
2025-09-15 12:58:33,320 - DEBUG - Entering get_nmap_scan_results
2025-09-15 12:58:33,324 - WARNING - Nmap -sS scan requires root privileges. Falling back to -sT.
2025-09-15 12:59:20,558 - DEBUG - Exiting get_nmap_scan_results
2025-09-15 12:59:20,568 - DEBUG - Entering analyze_data_locally
2025-09-15 12:59:20,569 - DEBUG - Exiting analyze_data_locally
2025-09-15 12:59:20,569 - DEBUG - Exiting run_monitoring_cycle
2025-09-15 12:59:20,569 - DEBUG - Exiting main
2025-09-15 12:59:45,756 - DEBUG - __main__ - Entering main
2025-09-15 12:59:45,756 - INFO - database - Database initialized successfully.
2025-09-15 12:59:45,756 - INFO - __main__ - Running in test mode...
2025-09-15 12:59:45,756 - DEBUG - __main__ - Entering run_monitoring_cycle
2025-09-15 12:59:45,756 - INFO - __main__ - Running monitoring cycle...
2025-09-15 12:59:45,757 - DEBUG - __main__ - Entering get_system_logs
2025-09-15 12:59:45,757 - DEBUG - __main__ - Exiting get_system_logs
2025-09-15 12:59:45,757 - DEBUG - __main__ - Entering get_network_metrics
2025-09-15 12:59:47,785 - DEBUG - __main__ - Exiting get_network_metrics
2025-09-15 12:59:47,795 - DEBUG - __main__ - Entering get_sensor_data
2025-09-15 12:59:47,819 - DEBUG - __main__ - Exiting get_sensor_data
2025-09-15 12:59:47,820 - DEBUG - __main__ - Entering get_cpu_temperature
2025-09-15 12:59:47,820 - DEBUG - __main__ - Exiting get_cpu_temperature
2025-09-15 12:59:47,820 - DEBUG - __main__ - Entering get_gpu_temperature
2025-09-15 12:59:47,821 - DEBUG - __main__ - Exiting get_gpu_temperature
2025-09-15 12:59:47,821 - DEBUG - __main__ - Entering get_login_attempts
2025-09-15 12:59:47,821 - DEBUG - __main__ - Exiting get_login_attempts
2025-09-15 12:59:47,822 - DEBUG - __main__ - Entering get_docker_container_status
2025-09-15 12:59:47,822 - DEBUG - docker.utils.config - Trying paths: ['/home/artanis/.docker/config.json', '/home/artanis/.dockercfg']
2025-09-15 12:59:47,822 - DEBUG - docker.utils.config - No config file found
2025-09-15 12:59:47,823 - DEBUG - docker.utils.config - Trying paths: ['/home/artanis/.docker/config.json', '/home/artanis/.dockercfg']
2025-09-15 12:59:47,823 - DEBUG - docker.utils.config - No config file found
2025-09-15 12:59:47,833 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /version HTTP/1.1" 200 822
2025-09-15 12:59:47,836 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/json?limit=-1&all=1&size=0&trunc_cmd=0 HTTP/1.1" 200 None
2025-09-15 12:59:47,838 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/6fe246915fcd7e9ba47ab659c2bded702a248ba7ba0bea67d5440a429059ecf9/json HTTP/1.1" 200 None
2025-09-15 12:59:47,839 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/db9267cbc792fd3b42cbe3c91a81c9e9d9c8f10784264bbaa5dd6c8443f1ebec/json HTTP/1.1" 200 None
2025-09-15 12:59:47,840 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/04947c346ebea841c3ff66821fb02cceb1ce6fc1e249dda03f6cfcc7ab1387ee/json HTTP/1.1" 200 None
2025-09-15 12:59:47,841 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/892ca3318ca6c7f59efdafb7c7fe72c2fd29b2163ba93bd7a96b08bdf11149c7/json HTTP/1.1" 200 None
2025-09-15 12:59:47,842 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/e4c49da7ccd7dbe046e4b16b44da696c7ff6dbe2bfce332f55830677c8bb5385/json HTTP/1.1" 200 None
2025-09-15 12:59:47,843 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/eaf91d09a18ebc4c4a5273ea3e40ee5b235ff601b36df03b622ef7d4c711e14d/json HTTP/1.1" 200 None
2025-09-15 12:59:47,845 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/8ee77507e001ffa2e3c49fd0dff574b560301c74fe897e44d1b64bb30891b5dd/json HTTP/1.1" 200 None
2025-09-15 12:59:47,846 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/193897be46b32bbdcd70d9f8f00f4bb3a0ba4a9ad23222620a15b65aaa9407ea/json HTTP/1.1" 200 None
2025-09-15 12:59:47,847 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/ea66b86039b4d69764c32380e51f437cff7f5edd693c08343a6a305caf52d329/json HTTP/1.1" 200 None
2025-09-15 12:59:47,848 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/3af5798ed8340c94591efaa44b4beed306c4b753380f8fde0fd66dafcbf7491b/json HTTP/1.1" 200 None
2025-09-15 12:59:47,849 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/9bada910535adab609ae61c561e3373b2f7c5749fe831406f4f95d4262c40768/json HTTP/1.1" 200 None
2025-09-15 12:59:47,850 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/c8349318a9b41ee73228fd8017e54bfda30f09e196688b0e1adfdfe88d0e7809/json HTTP/1.1" 200 None
2025-09-15 12:59:47,851 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/dcaec110abb26aebf65c0dd85daccc345283ec3d6bacf3d64e42fbe8187ec005/json HTTP/1.1" 200 None
2025-09-15 12:59:47,852 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/2e4b6585210f65df2ec680fe3df7673fc7c5078d24e2103677409ece211b71c4/json HTTP/1.1" 200 None
2025-09-15 12:59:47,853 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/cd875071300812e4c3a15e2c84b9b73b36f67a236c1fdd46c5a49f3992aa429f/json HTTP/1.1" 200 None
2025-09-15 12:59:47,854 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/393705e06222d67c9de37dce4b03c036bc3774deb9d8a39bda8096481be569c3/json HTTP/1.1" 200 None
2025-09-15 12:59:47,856 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/0ca3adee66289acbaff8a2cae54e888b3fffe2f8b645ce326cf9072023f2d81c/json HTTP/1.1" 200 None
2025-09-15 12:59:47,858 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/1a4d4abeea6d3488f754679bde7063749213120e9f243c56f060a636ae5ea187/json HTTP/1.1" 200 None
2025-09-15 12:59:47,859 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/ae68bc651bf3188f354038b4acc819b30960bb0ce6e6569b132562f15b9d54e8/json HTTP/1.1" 200 None
2025-09-15 12:59:47,859 - DEBUG - __main__ - Exiting get_docker_container_status
2025-09-15 12:59:47,861 - DEBUG - __main__ - Entering get_nmap_scan_results
2025-09-15 12:59:47,865 - WARNING - __main__ - Nmap -sS scan requires root privileges. Falling back to -sT.
2025-09-15 13:00:16,585 - DEBUG - __main__ - Exiting get_nmap_scan_results
2025-09-15 13:00:16,588 - INFO - database - Retention cutoff: 2025-09-15T18:00:15.588626+00:00
2025-09-15 13:00:16,589 - INFO - database - Found 1 old records to delete.
2025-09-15 13:00:16,591 - INFO - database - Deleted 1 old records.
2025-09-15 13:00:16,591 - DEBUG - __main__ - Entering analyze_data_locally
2025-09-15 13:00:16,591 - DEBUG - __main__ - Exiting analyze_data_locally
2025-09-15 13:00:16,591 - DEBUG - __main__ - Exiting run_monitoring_cycle
2025-09-15 13:00:16,591 - DEBUG - __main__ - Exiting main
2025-09-15 13:00:19,271 - DEBUG - __main__ - Entering main
2025-09-15 13:00:19,271 - INFO - database - Database initialized successfully.
2025-09-15 13:00:19,271 - INFO - __main__ - Running in test mode...
2025-09-15 13:00:19,271 - DEBUG - __main__ - Entering run_monitoring_cycle
2025-09-15 13:00:19,271 - INFO - __main__ - Running monitoring cycle...
2025-09-15 13:00:19,271 - DEBUG - __main__ - Entering get_system_logs
2025-09-15 13:00:19,271 - DEBUG - __main__ - Exiting get_system_logs
2025-09-15 13:00:19,272 - DEBUG - __main__ - Entering get_network_metrics
2025-09-15 13:00:21,297 - DEBUG - __main__ - Exiting get_network_metrics
2025-09-15 13:00:21,299 - DEBUG - __main__ - Entering get_sensor_data
2025-09-15 13:00:21,314 - DEBUG - __main__ - Exiting get_sensor_data
2025-09-15 13:00:21,314 - DEBUG - __main__ - Entering get_cpu_temperature
2025-09-15 13:00:21,315 - DEBUG - __main__ - Exiting get_cpu_temperature
2025-09-15 13:00:21,315 - DEBUG - __main__ - Entering get_gpu_temperature
2025-09-15 13:00:21,315 - DEBUG - __main__ - Exiting get_gpu_temperature
2025-09-15 13:00:21,315 - DEBUG - __main__ - Entering get_login_attempts
2025-09-15 13:00:21,315 - DEBUG - __main__ - Exiting get_login_attempts
2025-09-15 13:00:21,315 - DEBUG - __main__ - Entering get_docker_container_status
2025-09-15 13:00:21,315 - DEBUG - docker.utils.config - Trying paths: ['/home/artanis/.docker/config.json', '/home/artanis/.dockercfg']
2025-09-15 13:00:21,315 - DEBUG - docker.utils.config - No config file found
2025-09-15 13:00:21,315 - DEBUG - docker.utils.config - Trying paths: ['/home/artanis/.docker/config.json', '/home/artanis/.dockercfg']
2025-09-15 13:00:21,315 - DEBUG - docker.utils.config - No config file found
2025-09-15 13:00:21,321 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /version HTTP/1.1" 200 822
2025-09-15 13:00:21,324 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/json?limit=-1&all=1&size=0&trunc_cmd=0 HTTP/1.1" 200 None
2025-09-15 13:00:21,326 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/6fe246915fcd7e9ba47ab659c2bded702a248ba7ba0bea67d5440a429059ecf9/json HTTP/1.1" 200 None
2025-09-15 13:00:21,327 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/db9267cbc792fd3b42cbe3c91a81c9e9d9c8f10784264bbaa5dd6c8443f1ebec/json HTTP/1.1" 200 None
2025-09-15 13:00:21,328 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/04947c346ebea841c3ff66821fb02cceb1ce6fc1e249dda03f6cfcc7ab1387ee/json HTTP/1.1" 200 None
2025-09-15 13:00:21,329 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/892ca3318ca6c7f59efdafb7c7fe72c2fd29b2163ba93bd7a96b08bdf11149c7/json HTTP/1.1" 200 None
2025-09-15 13:00:21,331 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/e4c49da7ccd7dbe046e4b16b44da696c7ff6dbe2bfce332f55830677c8bb5385/json HTTP/1.1" 200 None
2025-09-15 13:00:21,332 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/eaf91d09a18ebc4c4a5273ea3e40ee5b235ff601b36df03b622ef7d4c711e14d/json HTTP/1.1" 200 None
2025-09-15 13:00:21,334 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/8ee77507e001ffa2e3c49fd0dff574b560301c74fe897e44d1b64bb30891b5dd/json HTTP/1.1" 200 None
2025-09-15 13:00:21,335 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/193897be46b32bbdcd70d9f8f00f4bb3a0ba4a9ad23222620a15b65aaa9407ea/json HTTP/1.1" 200 None
2025-09-15 13:00:21,336 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/ea66b86039b4d69764c32380e51f437cff7f5edd693c08343a6a305caf52d329/json HTTP/1.1" 200 None
2025-09-15 13:00:21,337 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/3af5798ed8340c94591efaa44b4beed306c4b753380f8fde0fd66dafcbf7491b/json HTTP/1.1" 200 None
2025-09-15 13:00:21,338 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/9bada910535adab609ae61c561e3373b2f7c5749fe831406f4f95d4262c40768/json HTTP/1.1" 200 None
2025-09-15 13:00:21,339 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/c8349318a9b41ee73228fd8017e54bfda30f09e196688b0e1adfdfe88d0e7809/json HTTP/1.1" 200 None
2025-09-15 13:00:21,340 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/dcaec110abb26aebf65c0dd85daccc345283ec3d6bacf3d64e42fbe8187ec005/json HTTP/1.1" 200 None
2025-09-15 13:00:21,341 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/2e4b6585210f65df2ec680fe3df7673fc7c5078d24e2103677409ece211b71c4/json HTTP/1.1" 200 None
2025-09-15 13:00:21,343 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/cd875071300812e4c3a15e2c84b9b73b36f67a236c1fdd46c5a49f3992aa429f/json HTTP/1.1" 200 None
2025-09-15 13:00:21,344 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/393705e06222d67c9de37dce4b03c036bc3774deb9d8a39bda8096481be569c3/json HTTP/1.1" 200 None
2025-09-15 13:00:21,345 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/0ca3adee66289acbaff8a2cae54e888b3fffe2f8b645ce326cf9072023f2d81c/json HTTP/1.1" 200 None
2025-09-15 13:00:21,346 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/1a4d4abeea6d3488f754679bde7063749213120e9f243c56f060a636ae5ea187/json HTTP/1.1" 200 None
2025-09-15 13:00:21,347 - DEBUG - urllib3.connectionpool - http://localhost:None "GET /v1.51/containers/ae68bc651bf3188f354038b4acc819b30960bb0ce6e6569b132562f15b9d54e8/json HTTP/1.1" 200 None
2025-09-15 13:00:21,347 - DEBUG - __main__ - Exiting get_docker_container_status
2025-09-15 13:00:21,349 - DEBUG - __main__ - Entering get_nmap_scan_results
2025-09-15 13:00:21,353 - WARNING - __main__ - Nmap -sS scan requires root privileges. Falling back to -sT.
2025-09-15 13:05:10,688 - DEBUG - __main__ - Exiting get_nmap_scan_results
2025-09-15 13:05:10,691 - INFO - database - Retention cutoff: 2025-09-15T18:05:09.691390+00:00
2025-09-15 13:05:10,691 - INFO - database - Found 1 old records to delete.
2025-09-15 13:05:10,693 - INFO - database - Deleted 1 old records.
2025-09-15 13:05:10,694 - DEBUG - __main__ - Entering analyze_data_locally
2025-09-15 13:05:10,695 - DEBUG - __main__ - Exiting analyze_data_locally
2025-09-15 13:05:10,695 - DEBUG - __main__ - Exiting run_monitoring_cycle
2025-09-15 13:05:10,695 - DEBUG - __main__ - Exiting main
2025-09-15 13:21:41,948 - INFO - Running in test mode...
2025-09-15 13:21:41,949 - INFO - Running monitoring cycle...
2025-09-15 13:21:44,096 - WARNING - Nmap -sS scan requires root privileges. Falling back to -sT.
2025-09-15 13:21:56,641 - INFO - Detected 9 anomalies: [{'severity': 'high', 'reason': 'High number of blocked connections (1477) from IP address: 23.28.198.165'}, {'severity': 'high', 'reason': 'High number of blocked connections (33) from IP address: 84.252.134.217'}, {'severity': 'high', 'reason': 'High number of blocked connections (140) from IP address: 51.250.10.6'}, {'severity': 'high', 'reason': 'High number of blocked connections (48) from IP address: 158.160.20.113'}, {'severity': 'high', 'reason': 'High number of blocked connections (13) from IP address: 182.93.50.90'}, {'severity': 'high', 'reason': 'High number of blocked connections (82) from IP address: 172.22.0.2'}, {'severity': 'high', 'reason': 'High number of blocked connections (591) from IP address: 192.168.2.117'}, {'severity': 'high', 'reason': 'High number of blocked connections (12) from IP address: 172.23.0.2'}, {'severity': 'high', 'reason': 'High number of blocked connections (11) from IP address: 192.168.2.104'}]
2025-09-15 13:21:56,642 - INFO - Generating LLM report...
2025-09-15 13:22:04,084 - INFO - LLM Response: {'severity': 'high', 'reason': 'High number of blocked connections detected from multiple IP addresses: 23.28.198.165 (1477), 84.252.134.217 (33), 51.250.10.6 (140), 158.160.20.113 (48), 182.93.50.90 (13), 172.22.0.2 (82), 192.168.2.117 (591), 172.23.0.2 (12), and 192.168.2.104 (11). This indicates a potential coordinated attack or misconfigured system.'}
2025-09-15 13:22:04,982 - ERROR - Error sending Discord alert: 400 - b'{"content": ["Must be 2000 or fewer in length."]}'
2025-09-15 13:22:11,390 - INFO - Google Home alert sent successfully.
2025-09-15 13:25:08,619 - INFO - Running monitoring cycle...

View File

@@ -0,0 +1,32 @@
2025-09-14 20:27:49,614 - INFO - Running monitoring cycle...
2025-09-14 20:34:15,578 - INFO - Running monitoring cycle...
2025-09-14 20:39:17,650 - INFO - Running monitoring cycle...
2025-09-14 20:44:19,738 - INFO - Running monitoring cycle...
2025-09-14 20:49:21,809 - INFO - Running monitoring cycle...
2025-09-14 20:55:57,821 - INFO - Running monitoring cycle...
2025-09-14 21:00:59,895 - INFO - Running monitoring cycle...
2025-09-14 21:06:02,000 - INFO - Running monitoring cycle...
2025-09-14 21:11:04,092 - INFO - Running monitoring cycle...
2025-09-14 21:46:00,340 - INFO - Running monitoring cycle...
2025-09-14 21:51:02,413 - INFO - Running monitoring cycle...
2025-09-14 21:56:04,515 - INFO - Running monitoring cycle...
2025-09-14 22:01:06,608 - INFO - Running monitoring cycle...
2025-09-14 22:08:01,730 - INFO - Running monitoring cycle...
2025-09-14 22:13:03,882 - INFO - Running monitoring cycle...
2025-09-14 22:18:06,032 - INFO - Running monitoring cycle...
2025-09-14 22:23:08,183 - INFO - Running monitoring cycle...
2025-09-14 22:29:47,066 - INFO - Running monitoring cycle...
2025-09-14 22:34:49,156 - INFO - Running monitoring cycle...
2025-09-14 22:39:51,311 - INFO - Running monitoring cycle...
2025-09-14 22:44:53,423 - INFO - Running monitoring cycle...
2025-09-14 22:53:51,148 - INFO - Running monitoring cycle...
2025-09-14 22:58:53,301 - INFO - Running monitoring cycle...
2025-09-14 23:03:55,388 - INFO - Running monitoring cycle...
2025-09-14 23:08:57,530 - INFO - Running monitoring cycle...
2025-09-14 23:18:07,849 - INFO - Running monitoring cycle...
2025-09-14 23:23:09,993 - INFO - Running monitoring cycle...
2025-09-14 23:28:12,167 - INFO - Running monitoring cycle...
2025-09-14 23:33:14,332 - INFO - Running monitoring cycle...
2025-09-14 23:46:15,054 - INFO - Running monitoring cycle...
2025-09-14 23:51:17,204 - INFO - Running monitoring cycle...
2025-09-14 23:56:19,308 - INFO - Running monitoring cycle...

1
ufw_log_position.txt Normal file
View File

@@ -0,0 +1 @@
822805